Mechanism Design for Connecting Regions Under Disruptions

Hau Chan!, Jianan Lin?, Zining Qin’, Chenhao Wang***

!'University of Nebraska-Lincoln
Rensselaer Polytechnic Institute
3Guangdong Provincial Key Laboratory IRADS, BNU-HKBU United International College
4Beijing Normal University-Zhuhai

Abstract

Man-made and natural disruptions such as planned construc-
tions on roads, suspensions of bridges, and blocked roads by
trees/mudslides/floods can often create obstacles that sepa-
rate two connected regions. As a result, the traveling and
reachability of agents from their respective regions to other
regions can be affected. To minimize the impact of the obsta-
cles and maintain agent accessibility, we initiate the problem
of constructing a new pathway (e.g., a detour or new bridge)
connecting the regions disconnected by obstacles from the
mechanism design perspective. In the problem, each agent in
their region has a private location and is required to access
the other region. The cost of an agent is the distance from
their location to the other region via the pathway. Our goal is
to design strategyproof mechanisms that elicit truthful loca-
tions from the agents and approximately optimize the social
or maximum cost of agents by determining locations in the
regions for building a pathway. We provide a characterization
of all strategyproof and anonymous mechanisms. For the so-
cial and maximum costs, we provide upper and lower bounds
on the approximation ratios of strategyproof mechanisms.

1 Introduction

In modern societies, various types of infrastructures are
constructed to connect regions to facilitate the traveling or
reachability of agents from their corresponding regions to
other regions (Amekudzi, Thomas-Mobley, and Ross 2007;
Forkenbrock and Foster 1990; Narayanaswami 2017). These
types of infrastructures include highways, streets, roads,
bridges, and transportation systems. For instance, using the
road infrastructure, an agent from a region can drive to reach
another region effectively.

Unfortunately, these infrastructures can sometimes be in-
terrupted either temporarily or permanently due to man-
made or natural disruptions (Boakye et al. 2022; Faturechi
and Miller-Hooks 2015; Gu et al. 2020; Serdar, Kog¢, and
Al-Ghamdi 2022). For example, man-made disruptions can
refer to the planned large construction project of a road, the
construction of a transportation hub (e.g., a subway station),
the suspension of bridges (e.g., due to accidents), or the in-
terruption of an area due to public activities (e.g., parades,
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temporary markets, or sporting events). In addition, natural
disruptions can be in the form of the aftermath of disasters
(e.g., earthquakes and storms), where roads and bridges are
damaged or blocked by large trees, mudslides, or floods.

These disruptions can often result in obstacles that discon-
nect any two regions and affect the traveling and reachability
of agents. Therefore, our goal is to determine the best way to
construct new routes/pathways connecting the disconnected
regions in order to minimize the impact of the obstacles and
maintain the accessibility of the agents. In temporary disrup-
tions with obstacles (e.g., road constructions, public events,
or large trees on roads), the new pathways can be viewed as
detours connecting the regions so that agents can continue to
access other regions before the removal of the obstacles. In
permanent disruptions with obstacles (e.g., the suspensions
of bridges or roads), the new pathways can be regarded as
part of newly added roads or bridges connecting the regions.
With the new pathways, the agents from their corresponding
regions can still travel and reach the other regions, overcom-
ing the obstacles due to disruptions.
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Figure 1: An obstacle o disconnects the agents (denoted as
solid points) in two regions, and a new pathway (a, b) con-
nects them.

In Figure 1, we provide an example of the suspension of a
structurally deficient bridge (modeled simply as a line with
an obstacle on it). The bridge originally connected Region L
and Region R. With the bridge suspension, the bridge now
becomes an obstacle (denoted by o on the line), and the two
regions are now disconnected. Each agent located in their
respective region needs to access (e.g., for work, school, or
other daily routine) the other region divided by the obstacle.
As agents cannot cross the obstacle directly, our goal is to
maintain the accessibility of the agents to the regions (e.g.,
from Region L to Region R) by building a pathway or new
bridge (denoted as a green line with endpoints a and b in
Figure 1) connecting Region L and Region R.

Existing optimization literature has considered building



optimal pathways between two disconnected regions, aim-
ing to minimize the maximum distance between any two
points from the two regions (see, e.g., (Cai, Xu, and Zhu
1999; Kim, Shin, and Chwa 1998; Kim and Shin 2001; Tan
2000, 2002)). While these studies designed polynomial algo-
rithms for building optimal bridges between different types
of convex polygons (more details in related work), there are
two main assumptions that make the current optimization
literature not ideal for capturing real-world situations un-
der disruptions involving agents. First, existing literature as-
sumes that the agents are located in all of the points in the re-
gions. However, in many real-world situations, agents’ loca-
tions consist only of a subset of discrete points in the regions.
Second, existing literature assumes that each agent’s loca-
tion is public information. However, agent locations might
not be known in advance and require elicitation (Nisan et al.
2007; Procaccia and Tennenholtz 2013). Therefore, our goal
is to build optimal pathways to account for agents’ locations
to connect them to the respective regions.

Our Contribution

We initiate the mechanism design study of building (ap-
proximately) optimal pathways between two regions discon-
nected by obstacles under disruptions to connect agents from
their respective regions to other regions. We focus on a basic
setting where a line segment (denoted by an interval [0, 1])
connecting two regions is separated by an obstacle o (see
Figure 1).! Agents in the regions are denoted by sets N}
and N,, depending on whether their locations are points on
the left-hand side or the right-hand side of the obstacle (i.e.,
x; € 0,0) or z; € (o,1] for any agent 7 in N7 or Na).

We aim to design mechanisms to elicit agent locations and
build a pathway/edge (a,b) that connects the two discon-
nected regions, where the left endpoint a is in [0, 0) and the
right endpoint b is in (o, 1]. Given an edge (a, b), the cost of
an agentatz; € [0,0)is |x; —a|+k(b—a)+1—b with k be-
ing a non-negative multiplication factor, that is, the distance
from their location to the (farthest) endpoint on the other re-
gion, passing through edge (a,b). The cost of an agent at
x; € (0,1] is defined similarly as |z; — b| + k(b — a) + a.
We consider adding edges that minimize two different ob-
jectives: the social cost (i.e., the total cost of all agents) and
the maximum cost (i.e., the maximum cost among all agent
costs). When k£ > 1, a mechanism that returns an optimal so-
lution (0 — €, 0 + €) is group strategyproof for ¢ — 0. There-
fore, we only need to focus on the situation when k € [0, 1).?

We first provide a characterization of all strategyproof
and anonymous mechanisms as two-dimensional general-
ized median mechanisms by showing that the agent pref-
erences over the locations on where to build the pathway

!The line space has been extensively studied in mechanism de-
sign of facility location problems for modeling geographic regions
and other real-world non-geographic situations (Chan et al. 2021;
Procaccia and Tennenholtz 2013).

In various situations, the social planner can determine the
value of k appropriately. For instance, £ >> 1 can be set for con-
structing a temporary detour. When creating a new road or bridge
(to replace an older one), the social planner can set £ < 1 by mak-
ing it wider or having higher speed limits.

are two-dimensional single-peaked. The single-peakedness
means that agents have preferences over a set of options (i.e.,
pathway locations in our setting) that can be ordered, so that
each agent has the most preferred option (called the peak)
and their preference for other options decreases as they move
away from this peak. See more details in Section 3.

For the social cost, we derive an optimal solution on
where to build a pathway and show that the mechanism that
returns the optimal solution is group strategyproof. For the
maximum cost, we show that there is a unique optimal so-
lution on where to build a pathway and the optimal solu-
tion is not strategyproof. We show that a deterministic group
strategyproof mechanism, TWOEXTREME, that simply con-
nects two agent locations nearest to the obstacle has an ap-
proximation ratio of 1-%16 We provide an improved mecha-
nism, TWOEXTREMERESTRICT, by not allowing the end-
points of the edge to be too close to the obstacle (see The-
orem 5). On the other hand, we show that no determinis-
tic strategyproof mechanism has an approximation ratio less
than 1+2 N Moreover, we design a randomized group strat-

egyproof mechanism RANDMAXCOST that has an approxi-
4-2k 14k

mation ratio of max <ﬂ, e
646k

bound === for any randomized strategyproof mechanisms.
See Figure 2 for an illustration of the above bounds.

) . We also provide a lower

Ratio TWOEXTREME
2 —— TWOEXTREMERESTRICT
- - - Deterministic lower bound
1.8+ —_— RANDMAXCOST
16 * - - - Randomized lower bound

Figure 2: An illustration of upper and lower bounds for the
maximum cost when & € [0, 1). The upper bounds of our
mechanisms are depicted in solid lines, and the lower bounds
are in dashed lines.

All of our results apply to the setting where the obstacle is
a closed subinterval of [0, 1] because such a subinterval can
shrink to a point as in our setting.

Organization. We present the model in Section 2. We pro-
vide a characterization of all strategyproof mechanisms in
Section 3. We study the social cost in Section 4 and the max-
imum cost in Section 5. All omitted proofs are in Appendix.

Related Works

While no existing mechanism design literature considers our
setting, we discuss the most related optimization studies on
building optimal bridges connecting two regions and adding
edges to discrete networks to improve network parameters.
We also discuss the related works in the approximate mech-
anism design without money paradigm.



Bridge-building. Existing optimization literature has con-
sidered the problem of building an optimal bridge to connect
two disconnected regions. Cai et al. (1999) introduced the
problem of adding a line segment to connect two disjoint
convex polygonal regions in a plane, such that the length
of the longest path from a point in one polygon, passing
through the bridge, to a point in another region is minimized.
They proposed an O(n? logn)-time algorithm, where n is
the maximum number of extreme points of the polygons.
Later, (Bhattacharya and Benkoczi 2001) proposed a linear-
time algorithm that improves the O(n?logn)-time algo-
rithm in (Cai, Xu, and Zhu 1999). Tan (2000) independently
presented an alternative linear-time algorithm for the above
setting and further generalized it to an O(n?)-time algorithm
for bridging two convex polyhedra in space. (Kim and Shin
2001) provided algorithms to find an optimal bridge between
two convex polygons, two simple non-convex polygons, and
one convex and one simple non-convex polygons in O(n),
O(n?), and O(nlogn), respectively. Later, Tan (2002) pro-
vided an O(n log® n)-time algorithm for the settings of two
simple non-convex polygons. Kim et al. (1998) proposed a
linear-time algorithm to compute an optimal bridge between
two parallel lines separated by an obstacle to minimize the
length of the longest path connecting two points on the lines.
However, all of the above-mentioned works focus on all
points in the regions. Our work focuses on a finite subset of
points, which are the agents’ locations, and the mechanism
perspective in which agents’ locations are private.

Edge addition on networks. Existing optimization stud-
ies have examined adding edges to discrete networks (with
nodes and edges) to minimize the diameter or average short-
est distances between pairs of nodes of a network (see, e.g.,
(Demaine and Zadimoghaddam 2010; Meyerson and Tagiku
2009; Papagelis, Bonchi, and Gionis 2011; Perumal, Basu,
and Guan 2013). However, all these optimization studies on
discrete networks do not consider disconnected regions that
are continuous and assume agents occupy all nodes/vertices
of the network. Moreover, they do not consider the mecha-
nism design perspective.

Mechanism design. Our considered mechanism design
setting is within the paradigm of approximate mechanism
design without money, initialized by Procaccia and Tennen-
holtz (Procaccia and Tennenholtz 2013) who used facility
location problems (FLPs) as case studies. This paradigm in-
vestigates the design of approximately optimal strategyproof
mechanisms through the lens of the approximation ratio. In
a typical setting of FLPs, the agents report their private loca-
tions on the real line to a mechanism. The mechanism deter-
mines the locations for building facilities to minimize some
objectives involving the costs of agents, where the cost of
each agent is their distance to the facilities. Following their
work, variations of FLPs have been introduced and stud-
ied (see, e.g., (Dokow et al. 2012; Feldman and Wilf 2013;
Filos-Ratsikas and Voudouris 2021; Lin 2020; Mei et al.
2019; Meir 2019)). We note that the case k£ = 0 of our set-
ting is equivalent to a 2-FLP problem where each agent ¢
has two locations, x; and the endpoint of the other region
(0 or 1), whose cost is the total distance from their two lo-

cations to the two facilities (which are now represented as a
pathway with k£ = 0). We refer readers to a survey on mech-
anism design for FLPs (Chan et al. 2021). The most relevant
mechanism design work to ours is the work of (Chan and
Wang 2023) in which they considered modifying the struc-
ture of regions by adding a shuttle or road to improve the
distances of the agents to a prelocated facility. In contrast,
they do not consider two regions separated by an obstacle.

2 Model

Let N = {1,...,n} be the set of agents located in an in-
terval [0,1]. The location profile of agents is denoted as
x = (x1,...,2y). There is an obstacle located at point
o € (0,1). Provided that no agent is at o, this obstacle par-
titions the agents into N = (N7, N3) according to their re-
gions, where Ny = {i € N | z; < o} is the set of agents
on the left region, and No = {i € N | z; > o} is the
set of agents on the right region. The agents on one region
are required to access the other region. Due to the obstacle,
the agents cannot pass through it and reach the other region
directly. Hence, we want to build a new edge (a, b) that con-
nects the two regions with a € [0,0) and b € (o, 1]. The
length of the edge is k(b — a), where k is a positive constant.

A deterministic mechanism f : R® — R? is a function
that takes the agent location profile x as input and returns an
edge f(x). Given an edge f(x) = (a,b), the cost of each
agent ¢ € Nj on the left region is the distance to the right
endpoint 1 through the edge,

cost(a,b,x;) = |z; —a| + k(b —a) + (1 —b).

Similarly, the cost of each agent i € N3 on the right region
is the distance to the left endpoint 0 through the edge,

cost(a,b,z;) = |x; — bl + k(b —a) + a.

A randomized mechanism is a function f from R™ to prob-
ability distributions over R2. If f(x) = P is a probability
distribution, the cost of agent ¢« € N is defined as the ex-
pected cost cost(P, z;) = E(q,p)~p[cost(a, b, z;)].

A mechanism f is strategyproof if no agent can de-
crease their cost by misreporting the location within their
region. Formally, f is strategyproof if for any ¢ € [N, x and
x} with x;, 2} on the same region, cost(f(x;,x—;),x;) <
cost(f(x},x_;),x;), where x_; is the location profile of
the agents in N \ {i¢}. Further, f is called group strate-
gyproof if no group of agents can misreport simultaneously
so that all agents in the group are better off. That is, for
any S C N,x,xJ, there exists an agent ¢ € S such that
cost(f(x),x;) < cost(f(xg,%x_g), ;). A mechanism f is
anonymous if the outcomes are invariant under permutation
of agents, i.e., f(z1,...,2Zn) = f(Tr(1),- s Tn(n)) for ev-
ery profile x and every permutation of agents 7 : N — N.
Since a non-anonymous mechanism is based on the identity
of the agents and is much less interesting, we focus only on
anonymous mechanisms.

Our goal is to design (group) strategyproof mechanisms
with good performance guarantees under two objectives:
minimizing the social cost and minimizing the maximum
cost. The social cost with respect to an edge (a,b) and



location profile x is SC(a,b,x) = .y cost(a,b,x;).
The maximum cost with respect to an edge (a,b) and lo-
cation profile x is MC(a,b,x) = max;cy cost(a, b, x;).
A mechanism f is a-approximation (o« > 1) for the ob-
jective function A € {SC,MC} if A(f(x),x) < « -
min, ) er2 A(a, b, x) for all location profiles x € R™.

We remark that when the constant coefficient is £ > 1,
there is a trivial solution (0 — €, 0 + €) for some fixed value
e > 0. As k£ > 1, every agent wants the edge to be as
short as possible, that is, e approaches 0. Then, a mechanism
that returns the fixed solution (0 — €, 0 + €) is clearly group
strategyproof and (almost) optimal for both objectives when
€ — 0. Therefore, in the remainder of this paper, we assume
that & € [0,1). Because it is natural for each agent to only
misreport locations within their own region, our model as-
sumes that agents cannot misreport their locations in other
regions. However, it is worth noting that all of our mecha-
nisms (Mechanism 1-4) are still strategyproof and retain the
same approximation even without this assumption.

3 Characterizing Strategyproof Mechanisms

In this section, we show that the preference profile of agents
is multi-dimensional single-peaked, and the generalized me-
dian mechanisms compose the class of all anonymous strat-
egyproof mechanisms.

We start with some necessary definitions. Let D be a
set of possible outcomes. A one-dimensional axis A on D
is any strict ordering < 4 of the outcomes in D. A multi-
dimensional axis A™ = (4y,...,A,,) on D is a collection
of m distinct axes, each being a one-dimensional axis on D.

Definition 1 ((Barbera, Gul, and Stacchetti 1993)). Let A™
be an m-dimensional axis on the set D of possible out-
comes. An agent ¢’s preference =; is m-dimensional single-
peaked with respect to A™ if: (1) there is a single most-
preferred outcome (peak) p; € D, and (2) for any two out-
comes «, 5 € D, o »=; 5 whenever <4, a <4, p; OF
pi <a, @ <ga, fforallaxes Ay, t=1,...,m.

Then, a preference profile is called m-dimensional single-
peaked if there exists an m-dimensional axis A™ such that
every agent preference is m-dimensional single-peaked with
respect to A™. While the preference profile in our prob-
lem is not one-dimensional single-peaked, it is indeed two-
dimensional single-peaked.

Theorem 1. For any instance of our problem, the preference
profile of agents is 2-dimensional single-peaked.

Proof. In our problem, an outcome is a shortcut edge (a, b)
with a € [0,0) and b € (o, 1], and it uniquely corresponds
to a point (a, b) in the 2-dimensional zy-coordinate system.
Thus, the set of all possible outcomes can be represented by
aset D = {(z,y) e R? |0 <z < o<y < 1} in aplane,
as shown in Figure 3.

Now we show that every agent is 2-dimensional single-
peaked with respect to the collection of z-axis and y-axis.
For any agent ¢« € Nj, the single most-preferred outcome
(peak) is p; = (x;,1) € D. For any two outcomes (points)

0.6

0| 0.6 T

Figure 3: An illustration of the set D when the obstacle is
at o = 0.6. For location profile x = (0.1,0.2,0.4,0.8, 1),
the agent peaks are (0.1, 1), (0.2,1), (0.4,1), (0,0.8), (0, 1),
denoted as red points.

(z,v), (¢',y") € D, if they satisfy (1) 2’ < = < x; or
r; <z <z',and (2) ¥’ <y < 1, then we have

oz, y,z;) =z —z|+kly—2z)+1-y
< |xl - ‘T/| + k<yl - x/) +1- yl = C(xlay/ami)?

implying that agent ¢ has a smaller cost under (z, y) than that
under (2’,y’) and the agent prefers (x, ). On the other hand,
for any agent 7 € INa, the single most-preferred outcome is
p; = (0,z;) € D. For any two outcomes (z,y), (z',y') €
D, if they satisfy (1) ¥/ < y < zjorz; < y < ¢/, and
(2) 0 < = < 2/, similarly, it is easy to see that agent j has
a smaller cost under (z,y) than that under (2, y’), and thus
the agent prefers (z, y). Hence, both conditions in Definition
1 are satisfied for every agent, and the preference profile is
2-dimensional single-peaked. O

For (one-dimensional) single-peaked preferences in a
one-dimensional space, a mechanism is a generalized
median mechanism if there exists m + 1 constants
bi,...,bpt1 € R U {—00,+00} such that the outcome
is med(p1,...,Pn,b1,...,bnt1), where med is the median
function, and p, ..., p, is the most-preferred outcome of
the n agents. For m-dimensional single-peaked preferences
in an m-dimensional space, an m-dimensional generalized
median mechanism can be decomposed into m independent
one-dimensional generalized median mechanisms, with the
t-th mechanism determining the coordinate of the outcome
on the ¢-th dimension, for all t = 1,...,m (see, e.g., (Sui
2015)). Barbera et al. (1993) provide a characterization re-
sult: a mechanism for multi-dimensional single-peaked pref-
erences in a multi-dimensional space is strategyproof and
anonymous if and only if it is a multi-dimensional general-
ized median mechanism. This characterization applies to our
problem by Theorem 1.

Corollary 1. A mechanism for our problem is strategyproof
and anonymous if and only if it is a 2-dimensional general-
ized median mechanism.

4 Social Cost

In this section, we consider the social cost. We start with
some necessary notations. For each point 2 € [0, 0), define
Nyj(z) = {i € Ni|z; < z} to be the set of agents in N7 on
the left of =, and Ny, (x) = {i € Ny|z; > x} to be the set
of agents in N7 on the right of . For each point = € (o, 1],
define Nyj(x) = {i € Najz; < z} to be the set of agents in



N on the left of x, and No,.(z) = {i € Na|z; > z} to be
the set of agents in N5 on the right of z.

We consider a mechanism that determines the location of
the two endpoints separately. First, the mechanism fixes b
and moves a from 0 towards the obstacle as long as the social
cost is decreasing. Second, it moves b from 1 towards the
obstacle as long as the social cost is decreasing.

Mechanism 1 (OpPTSOCCOST). Given location profile x,
let X, be the set of all points = € [0, o) that satisfy

[Ni(2) U Na| - (1= k) < [Nip(2)] - (1+F),

and let ¢* = sup X, if X, is non-empty and a* = 0 other-
wise. Let X g be the set of all points = € (0, 1] that satisfy

[Nor(2) U N[ - (1= k) < [Nai(z)[ - (1 + k),

and let b* = inf X if X is non-empty and b* = 0 other-
wise. Return (a*, b*).

Note that for every = € [0, 0) and fixed b, if we move the
left endpoint a from x to x + € for some sufficiently small
value € > 0, the cost of the agents in Ny;(z) U N3 increases
by (1 — k)e, and the cost of the agents in N1,.(z) decreases
by (1+ k)e. Thus, if we move a from 0 towards the obstacle
as long as the social cost is decreasing, it approaches the
supremum of X7. Symmetrically, we move b towards the
obstacle and it approaches the infimum of Xp. Since the
supremum of X and the infimum of X can only be the
agent locations, the mechanism is in polynomial time.

When k£ = 0, OPTSOCCOST is exactly the median mech-
anism that selects the z-coordinate (resp. y-coordinate) of
the outcome to be the median of the z-coordinates (resp. y-
coordinates) of n agent peaks.

Theorem 2. Mechanism 1 is group strategyproof and opti-
mal for the social cost.

Proof. For the group strategyproofness, we consider a group
of agents S C Ny U Na. Let f(x) = (a,b) be the outcome
when all agents report true locations, and f(x,x_g) =
(a’',b") be the outcome when the agents in S misreport xs.
Assume w.l.o.g. that |a —a’| > |b—b'|. We show that at least
one agent in the group cannot gain by misreporting.

If a’ < a, the agents in Ny,.(a) cannot gain and they are
not in the group. Since the agents in Ny cannot change the
location of a, by the definition of the mechanism, an agent
located at @ must be in the group and misreport a location
to the left of a. The cost of this agent decreases by at most
(1 —=Kk)b —b] — (1 4+ k)(a — a’) <0, indicating that this
agent can never gain.

If @’ > a, by the mechanism, there exists at least one
agent in Ny;(a) and in group S who misreport the location to
the right of a. However, the cost of such an agent in Ny;(a)N
S will decrease by at most (1—k)|b'—b|—(1—k)(a’—a) < 0,
and the agent cannot gain by misreporting.

For the optimality, let (a*, b*) be the solution returned by
the mechanism, and let (a,b) be an optimal solution. As-
sume w.l.o.g. that |a —a*| > [b—b*|. If a < a*, we consider
a new solution (a + €, b), where € > 0 is a sufficiently small
number so that there is no agent in the interval (a,a + €).
Compared with solution (a, b), each agent in Ny;(a) U Ny

increases the cost by (1 — k)¢, and each agent in Ny,.(a)
decreases the cost by (1 + k)e. By the definition of a* and
the fact that a < a*, we have |Ny;(a) U No| - (1 — k) <
|N1-(a)| - (1 + k), indicating that the social cost of (a, b) is
larger than that of (a+¢, b), which contradicts the optimality.
If a > a*, we change the solution (a,b) to (a*,b). Each
agent in Ny;(a*)U N3 decreases the cost by (1 —k)(a —a*),
and the increase of cost for every agent in N1, (a*) is at most
(1 + k)(a — a*). By the definition of a* = sup X, and the
fact that X, is an open set, we have | Ny;(a*)UNs|-(1—k) >
|N1,(a*)|- (14 k). It indicates that the social cost of (a*, b)
is no more than that of (a,b), and (a*, b) is also optimal.
Then we change the solution (a*, b) to (a*, b*). By a sym-
metric analysis, we know that b > b* is impossible, and if
b < b*, the social cost of (a*,b*) is no more than that of
(a*,b). Hence, (a*,b*) is optimal. O

5 Maximum Cost

In this section, we consider the maximum cost. We first char-
acterize the unique optimal solution and show that the mech-
anism that returns the optimal solution is not strategyproof.
We then study deterministic and randomized mechanisms.

The Optimal Maximum Cost

Given location profile x, let ; = min{z;|i € N;} and z,, =
max{x;|i € N1} be the two extreme agent locations to the
left, and let y; = min{x;|j € N2} and y, = max{z;|j €
N5} be the two extreme agent locations to the right.

Lemma 1. In any optimal solution (a, b) for maximum cost,
we have a < %andbz WT%

Proof. Suppose that a > Z3%r  which indicates that
cost(a, b, x,) < cost(a,b,x;). Clearly, the maximum cost
is attained by x; or y; or y,.. We consider a solution (a — ¢, b)
that moves the left endpoint to a sufficiently small positive
value € < a — % Then the cost of the agents at z;, y;, Yy
decreases, and thus the maximum cost decreases, which con-
tradicts the optimality. Therefore, it must be a < ””JFTC”’" By

a symmetric analysis, we can prove b > “F¢-, O

Lemma 2. In any optimal solution (a, b) for maximum cost,
either a = %, orb = yH'T%

Proof. Suppose that a # WT“ and b # % By Lemma
1, we have a < £5%= and b > % It is easy to see that
the maximum cost is attained by either x,. or y;. We consider
a solution (a+e¢, b—¢) that moves the two endpoints towards
the obstacle by a sufficiently small value ¢ > 0. The cost
of both agents at z, and y; decreases by (1 + k)e — (1 —
k)e = 2ke, and thus the maximum cost decreases, which
contradicts the optimality. Therefore, it must be a = %,

orb = “t¥ or both hold. O

Now we describe the algorithm OPTMAXCOST to derive
the optimal maximum cost. Given location profile x, if 1 —
yr > ay, define a* = ZE2r and b* = Lo2 4 LI 1 —y, <
;, define a* = Z:2¥= 4 L and b* = “E¥ Return (a*, b*).



Notice that when 1 — y, = z;, the mechanism simply
returns the two midpoints (£5%= #tue),

Theorem 3. OPTMAXCOST returns the unique optimal so-
lution for maximum cost. In addition, the optimal maximum
cost is attained by both the agents located at .. and v;.

Proof. We focus only on the case when 1 — y,. > x;, as the
other case is symmetric. The mechanism returns (a*,b*) =
(fze m=2 4 1) The maximum cost under (a*, b*) is at-
tained by the agents at x;, =, and y;, that is,

* Pk Ty — T * * 1 Yy —
t b = k(b* — -
cost(a*,b*, x;) 5 + k( a)—|—2 5
1 y+a T + Ty
5 5 + k( a*) + 5

which is no less than cost(a*, b*, y,) since b* > %

Suppose that (a, b) is an optimal solution. By Lemma 2,
we have either a = % orb = yH—Tyr When a = %
if b < b*, then the agents at 2; and x, have a larger cost in
(a, b) than that in (a*, b*), implying that (a, b) is not optimal
for maximum cost. If b > b*, then the agent at y; has a
larger cost in (a, b) than that in (a*, b*), and thus (a, b) is not
optimal. Therefore, (a*, b*) is the unique optimal solution.

When b = %, we have a < % by Lemma 1, and
the maximum cost induced by (a, b) is at least

COSt(a,b,l’T):xr_a_’_k(yl—;y’l‘ _a)_i_l_yl—;y’r
ZIr*(Hk)xﬁmr+1—(17k)yl;yr

> COSt(a*v b*a yl)7

where the equation cost(a, b, z,) = cost(a*,b*,y;) holds
only if 1 —y, = z; and a = 2= thatis, (a,b) = (a*,b*).
Therefore, (a*, b*) is the unique optimal solution. O

However, OPTMAXCOST is not strategyproof. Consider
a location profile x = (0,0.2,0.8,1), and the obsta-
cle is at 0.5. The mechanism returns the two midpoints
(Zrfee 9fde) = (0.1,0.9), and the cost of the agent at
0.2 1s 0.2 + 0.8k. If this agent misreports the location as
0.4, then the outcome of the mechanism becomes (0.2, 0.9),
and the cost of this agent with true location 0.2 decreases to
0.1+ 0.7k < 0.2 + 0.8k.

Deterministic Mechanisms

We consider designing deterministic strategyproof mecha-
nisms with good performance guarantees. We first present a
simple mechanism that connects the two extreme agent lo-
cations x,- and y; (following the idea that the optimal max-
imum cost is attained by both z,. and y;). We then improve
the mechanism by restricting the endpoints of the edge from
being too close to the obstacle.

Mechanism 2 (TWOEXTREME). Given location profile x,
return (2, y;).

This mechanism falls in the class of generalized median
mechanisms. Because z,. is the rightmost x-coordinate of
the n peaks and y; is the leftmost y-coordinate of the n
peaks, setting by = —oo and by = -+ = by = +0
gives z, = med(0,...,0, (z;)ien,,b1,---,bnt1), and set-
ting by = --- = b, = —oo and b,y; = 400 gives
yr =med(1,...,1,(2j)jeny, b1, . s bny1). Thusitis strat-
egyproof by the characterization in Corollary 1.

2

Theorem 4. Mechanism 2 is group strategyproof and 13-

approximation for maximum cost.

Proof. For the group strategyproofness, we consider a group
of agents S C Ny UNs. Let f(x) = (z,, y;) be the outcome
when all agents report true locations, and f(x,x_g) =
(x].,y]) be the outcome when the agents in S misreport x’.
Assume w.Lo.g. that |z, — z.| > |y, — y;|. If 2. < z,, an
agent located at x,- must be in the group and misreport a lo-
cation to the left of x,.. The cost of this agent decreases by at
most (1 —k)|y; —yi| — (1+k)(z, — ) <0, indicating that
this agent can never gain. If 2. > x,, the cost of any agent in
N decreases by at most (1—k) |y, —yi|—(1—k)(z, —z,) <
0, indicating that the agent in N; can never gain and they are
not in the group S. However, by the definition of the mech-
anism, other agents in [N, are not able to induce an outcome
(«.,y;) with 2], # x,, giving a contradiction.

For the approximation, we consider an arbitrary instance
with location profile x. Assume w.l.0o.g. that 1 — y,. >
x;. By Theorem 3, the optimal solution is (a*,b*) =
(tfze mo2 4 1) and the optimal maximum cost is

cost(xr, yi, 1)

cost(a*,b*, x,) = cost(a®,b*,y;) = cost(a”,b*, x;)

- xl;w’“ B A LA &

Iy —x Ly — 2z —

=37 7 THET 2 )

Now we consider the solution (x,,y;) returned by the
mechanism. Clearly, the maximum cost is attained by z; or
yr. Since 1 — y, > x, the cost of the agent at x; is

cost(zr,yi,x) =z, —x; + k(y — ) + 1 —y
> + k(Y — xr) + yr — Y1 = cost(Tr, Y, yr ),
implying that the maximum cost is attained by x;. Further,
= w4+ k(y —x) +1 -y
cost(a*,b*,x,) 11— yt+ oz +k(14+y — 22 — x,)
1+(17k)l'rfxlf(1fk)yl
T+ (1 —kK)z, +k(I—2z) - 1 —k)y
Note that the assumption 1 — y, > x; implies z; < %, and
thus 1 +(11t(kl);ffkr(zfl2m < 1. Hence, % is de-
creasing with y;, and by the fact y; > z,., it gives
cost(Xy, Y1, x1) <3 1+ (1 —-ka, —2— (1 —k)z,
cost(a*,b*,x.) = 14+ (1 —k)x, + k(1 —2x;)—(1 — k),
—9. 1-— X < 2 :
1+k—2kx; — 1+k
where the last inequality follows from that H}c%glkn

is decreasing with x;. Therefore, Mechanism 2 is
approximation for maximum cost.

2 __
1+k



Remark 1. We remark that it may be of interest to consider
other two-extreme mechanisms that always return (x;, y,.),
(z1,y1) or (z,,y,). Although these mechanisms are also
group strategyproof, their approximation ratio is 2 and it
cannot be improved for any k € [0,1).

The analysis for Mechanism 2 is tight for any &k € [0, 1].
Consider an instance with x; = 0, 1 — y, > x;, and y; =
z, + € for some sufficiently small positive number €. The
optimal solution is (%4%s U=2r4l) — (L= #E1) by The-
Ty

orem 3, and the optimal maximum cost is = +k- 1“’% +

2
1—Hu = itk _ 12k e Mechanism 2 returns (z,,;), and

2
the induced maximum costis x, —x;+ k(y; —x,)+1—y; =

1= (1 — k)e. The ratio is 5 mlmes — Top
e approaches 0. Hence, the worst case happens when x,. and
y; are very close to the obstacle o. To solve this case, we
need the endpoints of the edge to keep some distance from

the obstacle, which inspires the following mechanism.

Mechanism 3 (TWOEXTREMERESTRICT). Given location
profile x, return (a,b) with ¢ = min(z,,0 — oc) and b =
max(y;,0 + ¢ — oc), where o is the obstacle location and ¢
14+k2—VET K31 3k2 1k
1—k2 :
Note that TWOEXTREME is a special case of Mechanism
3 when ¢ = 0. Since the value of ¢ above is optimally set,
Mechanism 3 has an improved approximation ratio than the
H%ﬂ-approximation of TWOEXTREME. Mechanism 3 is also
in the class of generalized median mechanisms. Indeed, we
can set | V1| phantoms at point (0 — oc, 0), | N2| phantoms at
(1,04 c¢—co), and one phantom at (0, 1) in Euclidean plane,
and then a (resp. b) is the z-coordinate (resp. y-coordinate)
median of the 2n+ 1 points consisting of the n+ 1 phantoms
and the n peaks of agents.

when

is a value in [0, 1] set to be

Theorem 5. Mechanism 3 is group strategyproof and the
approximation ratio for maximum cost is at most two times
the maximum of the four numbers

1-(1—k)c k(e—c*)+1-¢2
1+k—(1 —k)e’  2—2c+2ck

1+ 2ck

de.
2 (1—k)e "¢

Next, we complete the results by a lower bound.

Theorem 6. No deterministic strategyproof mechanism has
an approximation ratio less than ﬁ for the maximum

cost, for any k € [0,1).

Proof. Consider the instance with location profile x =
(0,1 — ¢,1), where the obstacle is located between 1 — ¢
and 1, and € > 0 is a sufficiently small positive number. For
convenience, we will ignore the terms with respect to € in the
following calculations. Let f be a strategyproof mechanism,
and it returns f(x) = (a, 1) for some a € [0, 1).

Ifa > 1;(’“/%, consider another instance with location pro-

file x’ = (0, a, 1). The optimal solution is (§, 1) by Theo-
rem 3, and the optimal maximum cost is § + k(1 — §). By
the strategyproofness, f must return f (x’? = (a, 1), as oth-
erwise the agent located at a can decrease the cost by mis-
reporting a location 1 — e (resulting in a location profile x
and an outcome (a, 1)). Then the maximum cost induced by

the mechanism f is cost(a,1,0) = a + k(1 — a). Thus, the
approximation ratio of f is at least
a+k(l—a) k 2

L =9 _ > .
TTR1-%) ks 0BT 11vE

Ifa < 1;(%, consider another instance with location pro-

file x” = (a,1 — ¢,1). The optimal solution is (,1) by
Theorem 3, and the optimal maximum cost is # Again,
by the strategyproofness, f must return f(x”) = (a, 1), as
otherwise the agent located at a can decrease the cost by
misreporting a location 0 (resulting in a location profile x
and an outcome (a, 1)). Then the maximum cost induced by

fis1—a+ k(1 — a). Thus, the ratio of f is at least

E+1)A-a) _ vk 2

G A-ez20l- ) = o
L]

Although generally there is a gap between our upper

bound and the lower bound 1+2 NG they are matching when

k = 0or k — 1. The largest gap is about 0.127, which
happens when k ~ 0.311.

Randomized Mechanisms

Next, we consider randomized mechanisms. Inspired by the
worst-case instance of TWOEXTREME that returns (.., y;),
we have the following randomized mechanism.

Mechanism 4 (RANDMAXCOST). Given location profile
x, return (a, b) as (z., ;) with probability p and (%, y’TH)

with probability 1 — p, where p = max (3£, 1),

Theorem 7. Mechanism 4 is a randomized group strate-
gyproof mechanism, and the approximation ratio for max-

4—2k 14k
3—k 7’ 1+k2% )"

imum cost is max (

Theorem 8. No randomized strategyproof mechanism has
an approximation ratio less than SSE for the maximum

547k
cost, for any k € [0,1).

The largest gap between the upper and lower bounds is
about 0.162, which happens when & ~ 0.249.

6 Conclusion

We studied a novel mechanism design setting for connecting
two regions disconnected by obstacles under disruptions by
adding a pathway to minimize the social cost and the maxi-
mum cost of the agents. We first characterize all of the strate-
gyproof and anonymous mechanisms as 2-dimensional gen-
eralized median mechanisms. For the social cost and maxi-
mum cost, we derived optimal solutions on where to add the
pathway and designed strategyproof mechanisms.

For the open directions, an immediate direction is to ex-
amine whether one can improve the gaps between the upper
and lower bounds. Moreover, it would be interesting to con-
sider more general settings, including other types of regions
(e.g., convex regions), more than two regions, more than one
obstacle, or more than one pathway.
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A Remarks on single-peaked preferences

We remark that the preference profile of agents is not one-dimensional single-peaked, though we have shown it is two-
dimensional single-peaked.

Proposition 1. For any instance of our problem, the preference profile of agents is not one-dimensional single-peaked.

Proof. Let the obstacle be located at o = 0.5. Suppose for contradiction that there is a one-dimensional axis A on D so that
every agent is one-dimensional single-peaked with respect to A. Consider an agent ¢ € N; located at x; = 0. This agent has a
peak at (0, 1) and a preference

(0,1) =, (0,09) =; (0.2,1) = (0.2,0.9) (1)
over several possible outcomes.

If both outcomes (0.2,1), (0.2,0.9) are on the same region of (0, 1) with respect to axis A, by the single-peakedness and
(1), the ordering can only be (0,1) <4 (0,0.9) <4 (0.2,1) <4 (0.2,0.9), or (0.2,0.9) <4 (0.2,1) <4 (0,0.9) <4 (0,1),
or (0,0.9) <4 (0,1) <4 (0.2,1) <4 (0.2,0.9), or (0.2,0.9) <4 (0.2,1) <4 (0,1) <4 (0,0.9). Then we consider an agent
i’ € Ny located at z;; = 0.9 whose peak is (0,0.9). In all of the four cases, by the strict ordering < 4 and the single-peakedness
of i/, agent ¢’ should prefer (0.2, 1) to (0.2,0.9). However, this is not true because

cost(0.2,1,z;) = 0.3+ 0.8k > 0.2 + 0.7k = cost(0.2,0.9, ),
giving a contradiction.

If the outcomes (0.2, 1), (0.2, 0.9) are on different regions of (0, 1) with respect to axis A, by the single-peakedness of agent 4
and (1), the ordering can only be (0.2,1) <4 (0,1) <4 (0,0.9) <4 (0.2,0.9),0r (0.2,1) <4 (0,0.9) <4 (0,1) <4 (0.2,0.9),
or (0.2,0.9) <4 (0,1) <4 (0,0.9) <4 (0.2,1), or (0.2,0.9) <4 (0,0.9) <4 (0,1) <4 (0.2,1). Then we consider an agent
i" € Ny located at z:;» = 0.2 whose peak is (0.2, 1). In all of the four cases, by the strict ordering < 4 and the single-peakedness
of i", agent ¢"” should prefer (0,0.9) to (0.2,0.9). However, this is not true because

cost(0,0.9,z;+) = 0.3+ 0.9k > 0.1 4+ 0.7k = cost(0.2,0.9, z;),

giving a contradiction.
Therefore, it is impossible for every agent preference to be one-dimensional single-peaked with respect to axis A. O

As an example of 2-dimensional generalized median mechanisms, the MEDIAN mechanism selects the z-coordinate (resp.
y-coordinate) of the outcome to be the median of the z-coordinates (resp. y-coordinates) of n agent peaks. Note that the peak
of an agent i € Ny is (x;, 1), and the peak of an agent j € Ny is (0, x;). That is, the MEDIAN mechanism returns

(med(07 ] 07 (mi)i€N17b17 MR ] bn-‘rl)a

med((xj)j€N2, 1, ey 1, bl, ey bn+1)),
where function med has 2n + 1 entries, by = -+ - = bf%W = —00, and b[g]-s-l = =bpy1 = +00.

While this mechanism is of interests in facility location problems (Procaccia and Tennenholtz 2013; Sui 2015), it does not
perform as well as our mechanisms proposed for both social cost and maximum cost. We give some examples to illustrate it.
Consider the instance with location profile x = (0,¢,1 — ¢, 1), where the obstacle o satisfies 1 —¢ < 0o < lande > Oisa
sufficiently small positive number. For the maximum cost, the solution returned by the MEDIAN mechanism is (e, 1), and the

optimal solution is ( 15", 1). The approximation ration is at least

MC(e, 1,x) E(l—e)+1—2¢
1—¢ = 1—¢ 1—¢ - 2’
MC(355,1,x)  k(1-59+ 5
which is larger than the approximation ratio 127 of our TWOINNEREXTREME mechanism for any k € (0,1).

For the social cost, we note that when £ = 0 the MEDIAN mechanism is exactly our OPTSOCCOST mechanism, and thus
is optimal. When £k > %, consider profile x. The solution returned by the MEDIAN mechanism is again (e, 1), and the optimal
solution is (a — 1 — €, 1). The approximation ratio is at least

SC(e,1,x)  4k(l—¢€)+e+e+1—2¢ . 4k + 1

SC(1—e€,1,x)  4ke+2(1 —€) + (1 —2¢) 3 7
which is worse than our mechanism OPTSOCCOST. When 0 < k < %, consider another instance with one agent located at
0, t agents at €, and ¢ agents at 1 ({ = 1,2, 3, ...), where the total number of agentsisn = 2¢ + 1 > % when ¢ is sufficiently
large, and € > 0 is a sufficiently small positive number. The obstacle o satisfies 0 < o < e. Thus, the location profile is

‘ t
x = (Qm, 1,...,1). The MEDIAN mechanism outputs the solution (0, 1), while the optimal solution is (0, €). The
approximation ratio is at least

SC(O,l,x’): E(2t+1)+t(1—¢) _>t+/<:(2t+1):1+k(2t+1)—1>1

SC(0,e,x") ket +1)+(t+1)(1—¢) t4+1 t4+1 ’

which is worse than our mechanism OPTSOCCOST.



B Other Two-Extreme Mechanisms
2

The TWOINNEREXTREME mechanism that returns (.., ;) is proven to be group strategyproof and 157 -approximation for the
maximum cost in Theorem 4. We remark that other two-extreme mechanisms that return (z;, y,), (2, y:) or (2, y,) are also
group strategyproof, but the approximation ratio is 2.

The group strategyproofness follows from a similar analysis as in the proof of Theorem 4. For the approximation ratio,
we focus only on the instances with 1 — y, > 1y, as other instances are symmetric. The optimal solution is (a*,b*) =
(fze m=2 4 1), and the optimal maximum cost is attained by x;, z, and y; simultaneously. For the mechanism that returns
(21,yr), clearly the maximum cost is attained by x,. or y;. The cost of the agent at x,. is

COSt(Jleyr,xr) = Q(a* - 33[) + k(yT - .73[) +1-yr
<2(a* —x) +2k(b" —a®) +2(1 —b")
= 2-cost(a”,b", x,),

where the last inequality comes from the fact that b* = 1 + %22 < H'% The cost of the agent at y; is

cost(xy, Yr, Y1) = Yr — Y1 + k(yr — 1) + 24
<2(0" —y) +2k(b" — a”) + 2y
< 20" —yp) + 2k(b* — a™) + 2a"
=2 cost(a*,b*,y;).

For the mechanism that returns (x;, y; ), the maximum cost is attained by x,., that is,

cost(xy,y, ) =2(a* —x)) + k(yr — ) + 1 —y
<2(a* —x) +2k(0* —a”) +2(1 —b")
=2 cost(a*,b", x,),

For the mechanism that returns (z,, y,. ), we have cost(x,, y,, x;) < cost(x,,y;, x;) < H_ikcost(a*, b*, z,.) by Theorem 4, and

cost(Tr, Yr, Y1) = Yr — Y1 + k(yr — ) + 21
< 2(b" —yp) + 2k(b* — a¥) + 2a*
=2 cost(a*,b*,y;).
Therefore, the approximation ratio of all above mechanisms is 2.
The 2-approximation for the two-extreme mechanisms that return (z;, y-), (2, ;) or (x,,y,) cannot be improved, for any

k € [0, 1]. Consider any instance with x; = 0, . = 1 — ¢ for some sufficiently small positive number €, and y; = y, = 1,

and the obstacle is between 1 — € and 1. The optimal solution is (2422 1) by Theorem 3, and the optimal maximum cost is
L€ + k(1 — 15¢) = 2+ — 12Ee However, the maximum cost induced by (2;,,) = (21,) = (0,1) is 1 — € + k. We have
% — 2, when € approaches 0. A symmetric instance shows that the 2-approximation analysis for mechanism

(2, yr) is also tight.

C Proof of Theorem 8

Proof. Suppose that f is a randomized strategyproof mechanism with approximation ratio r < &6k

5171 - Consider the instance
with location profile x = (%, %, 1), where the obstacle is located at 1 — € and € > 0 is a sufficiently small positive number. For
convenience, we will ignore the terms with respect to € in the following calculations. The optimal solution is (%, 1), and the
optimal maximum cost is % + % Let P be the distribution of the left endpoint returned by mechanism f. For any realization

s ~ P, the maximum cost is 3 + |s — §| + k(1 — s) (attained by either the agent at % or the agent at 2), and the expected
maximum cost is

1 1
By the approximation ratio of , we have

%—HEHS — %H + k — kE[s]

L <, )
1 1 2k 1 1 1

= E[|s - §|] < T(g g) K(E[|s — g” + g) 3 k, 3)
2. 1 1.1 rE+38)+E-_1_k

Ells—=|]>=—E[ls— =[] >=- - —3 3 3 3 4

> Ells— 325 —Ells— 5 2 3 . @



Next, we consider the instance with location profile x = (1 1 — 2¢,1), where the obstacle is located at 1 — €. Again we

ignore the terms with respect to e for simplicity. The optimal solution is (2, 1), and the optimal maximum cost is % + % Let P’
be the distribution of the left endpoint returned by mechanism f, and s’ ~ P’. By the strategyproofness, we have

Burp |18 = 31) + b(1 ~ B[s) 2 Ells - ]| + k(1 ~ Efs) ®

as otherwise the agent located at % in the first instance would like to misreport the location as 1 — 2¢ and decrease the cost.
If E[s'] < E[s], then by (2) we have

1—k)E[s’ E — kE
( f) [fk]JrkS [S]Tk%k s,
3T % E
2+ 2y —k
Els] < 2—3——.
= E[s'] < T %

The maximum cost induced by the mechanism is at least

S El — o)+ (1~ E[¢) > 14k (1+ kB[]
> 1+I~s—(1+l~:)(‘{1”+12{),:_/ZC

1+k

Recall that the optimal maximum cost is . Hence, the approximation ratio is at least

23+ 3)r —2k 2 2k

2= 1—k T o1—k

which can be easily verified to be larger than 8% for any & € [0,1), given that < S*5% Therefore, it contradicts the

can t : 547k 547k
approximation ratio.
If E[s'] > E[s], then by (5) we have E[|s’ — 2|] > E[|s — Z|]. The maximum cost induced by the mechanism is at least

S HEl — 2l + k(1 ~ Els]) > £ + B[~ 5+ k(5 ~ B[S~ 5])

2
1+k 1
(- B[ - 5
1+k 2 1
> —— +(1—-k)(E[|s -] - =
>+ (L= BEL - 5] - 3)
1+k 1
> ——+(1-k)(E[|ls— =
22—+ (1 =k)Els -3l - ¢)
1+k 1 rG+ZE)+5-1-k 1-k
R AR A
2 3 1-k 6
24k (1+2k) k+1+k
= — — 7= —_— —_—— —
3 3 3 3 3
1 2k
=14+k—r(z+—
k=g + ),
where the last inequality comes from (4). Then the approximation ratio is at least
L+k—r(s+2)
3t35
which is strictly larger than » when r < gi% This gives a contradiction. O

D Proof of Theorem 7

Lemma 3. Mechanism 4 is group strategyproof.

Proof. We show that the mechanism is group strategyproof whenever p > 1*’“ . Consider a group of agents S C N; U Ns. Let

f(x) = (a, ) be the outcome when all agents report true locations, and f (x s, x_g) = (a/, V') be the outcome when the agents
in S misreport X, where a, b, a’, b’ are random variables that follow the distributions given in the mechanism. Assume w.lL.o.g.



that |E[a] — E[a']| > |E[b] — E[b’]|, which will cause |E[a] — E[a’]| # 0. We show that at least one agent in the group cannot
gain by misreporting.

Case 1. When E[a/] < E[a], then it must be 2], < z,., and the agent located at x, is in the group. Under the solution (a, b),
the cost of the agent at x,. is

cost(a, b, x,) = x,. — Ela] + k(E[b] — E[a]) + (1 — E[b]).
Under the solution (a’, '), the cost of the agent at z,. is
cost(a', V', z,) = x, — Eld'] + k(E[V'] — E[d']) + (1 — E[V']).
Since |E[a] — E[a’]| > [E[b] — E[b']|, it follows that
cost(a’, b, z,.) — cost(a,b,z,) = (1 + k)(E[a] — E[d']) — (1 — k)(E[p'] — E[b]) > 0,

indicating that this agent cannot gain.

Case 2. When E[a’] > Ela], E[b'] < E[b], there exists at least one agent ¢ € S N Nj. It is clear that any agent located at
[0, %] cannot gain because the change of the endpoints in both sides do not benefit this agent. For an agent ¢ € N7 located at
(%=, 2], under the solution (a, b), the cost of the agent at x,. is

cost(a,b,z;) =p- (v, — z; + K(E]D] — )+ (1 —p) - (x; — 5 +k(ED] — =)+ 1-E[]D]
r k r
=p- (zr =2 —ka,) + (1=p) - (2 = 5 = ) +1— (1= K)E[Y
Under the solution (a’, '), the cost of this agent is
! / / !/ ./L',/,, ka /
cost(a', V', x;)=p- (2, —x; —kxl)+ (1 —p) - (|Jz; — 5= )+1—(1-Fk)E[V]

Since E[b'] < E[b] and |z; — %,T\ >z — %IT, it follows that

1+k,

cost(a’, V', x;) — cost(a,b,z;) > p- (1 —k)(z), —x.) — (1 —p) - 5 (x, — )
1+k 2-2k 1+4+k
2 m(l — k) (2, — @) — 375 T(x; — ;) =0,

indicating that this agent cannot gain.
Case 3. When E[a'] > E[a], E[b'] > E[b], the agent located at y; must be in the group and misreport a location on the right
of y;. Still we calculate the cost of agent at y;. Under solution (a, b), it is

cost(a,b,yi) = E[b] — yi + k(E[b] — E[a]) + E[d]
And under solution (a’, ), it is
cost(a, ¥, 1) = E[V] -y + K(E[) — E[a')) + E[a’]
So we have
cost(a’,b',y;) — cost(a,b,y;) = (1 + k)(E[D] —E[B]) + (1 — k)(E[a'] — Ela]) > 0,

and thus this agent cannot decrease the cost. O

Then we prove the approximation ratio.
Proof. For the approximation, given any instance with location profile x, we assume w.l.o.g. that 1 — y,. > z;. By Theorem 3,
the optimal solution is (a, b) = (£52= %22 4 1) ‘and the optimal maximum cost is

1
cost(a,b,x;)) =a—x;+k(b—a)+1—b= 5[1 + (1 —-k)a,+ k(1 —2x)— (1 —Ek)y).
Now we consider the solution returned by Mechanism 4. We discuss the 2 realizations of the probability distribution.

* (z,,y) with probability p. By the analysis in the proof of Theorem 4 and the assumption 1 — y,. > x;, the maximum cost is
attained by x;, that is,

MC(xy,y1,x) = cost(xr,y1, 1) = 2 — 21 + k(yr — 2,) + 1 -y

s (%, sz’ ) with probability 1 — p. The maximum cost is attained by z,. or y;, where both costs are equal to
Ty 1+yl Ly 1+yl Ly 1—2/1
MC(— =—+4k - — .
(5 —5 X =75 +h(—; 5 )+ 3



Then the expected maximum cost is

Ty 1+ Ty 1-—
p-(rr—x+k(y—2.) +1—y)+(1—p)- (2+k( 2yz —§)+ le>
_ 4+ p) (k)@ —y) +1+p+ (1 —p)k — 2pay
5 )

Therefore, the ratio between the expected maximum cost and the optimal maximum cost is

(1+p) (L —k)(zr —y) +1+p+ (1 —p)k — 2px;
1+k+(1—k)(x, —y) — 2kay
c1tp+ (1 =p)k—2pm

6
- 14k —2kx, ©
1+p+(1—-pk 1+p+(1—-pk—p
T
1—-k

=1+ max <p(1_~_k)7(1p)k> ) ()

where (6) is because %’W is no more than 1 + p, and (7) comes from the facts that 1 — y,. > a; and 2; < 0.5.
Though setting p = ’fj_‘;’; minimizes the bound in (8), recall that the mechanism is group strategyproof only when p > %
Hence,we set p = max (’{i;’;, %) In this way, when & < 0.5, the ratio is at most 43%215’ and when k& > 0.5, the ratio is at
most £ O

1+k2°

E Proof of Theorem 5

In this proof, we first treat ¢ as a parameter in interval [0, 1] and do not specify its value. Then we select the best value of ¢ to
minimize the approximation ratio.

Proof of the group strategyproofness. Let (a,b) be the output. Note that a and b are independent random variables, and
(1 — ¢)oand o0 + ¢(1 — o) are two constants only related to k. Consider a group of agents S C Ny U Na, and let (a’, ') be the
output when the agents in S misreport. Assume w.l.0.g. that |[a’ — a| > |0/ — b| and |a’ — a| > 0.

When a < z,, since |’ — a| > 0, an agent located at x,, must be in the group and misreport a location to the left of z,.,
implying that ' < a < . The cost of this agent decreases by at most (1 — k)|b' — b| — (1 + k)(a — a’) < 0, indicating that
this agent can never gain.

When a = z,, it is either the case when an agent at x,. misreports to its left so that a’ < a, or the case when some agent in
N, misreports to the right of x,- so that ' > a. In both cases, the cost of this agent decreases by at most (1 — k)|b' —b| — (1 —
k)|a’ — a|] < 0, indicating that this agent can never gain.

Proof of the approximation ratio. Given any instance with location profile x, we assume w.l.o.g. that 1 — y, > z;. By
Theorem 3, the optimal solution is (a*, b*) = (£E2= W22t 4 1) ‘and the optimal maximum cost is

1
OPT = cost(a*,b",x;) =a" —x; + k(b —a™) +1-0" = 5[1 + (1 -k, + k(1 —2x;) — (1 - k)y].

We discuss four cases with respect to the output of the mechanism.

Case 1.z, < o(1 —¢),y; > o+ ¢(1 — 0). The output is a = z,.,b = y;, and the maximum cost must be achieved by z;,



because when 1 — g, > x; the cost at ¥,- is no more than the cost at z;. We have
cost(a, b, z;) T —x+k(y—x)+1—y
2-0OPT 1+ (1—k)z, + k(1 —21;) — (1 — k)y,
1+ (1 —-k)z, —x— (1 —Fk)y

1+ (L= k)a, k(- 22) — (1 - k)y ©
1+1-k)Q—-co—x— (1 —k)u
T1+(1-k1-co+k(1-2x)—-(1—-Fky
1+ (1 -k)(1Q—-co—z;— (1 —k)(o+¢c(1—0))
1+ (1 -k1-co+k(1—-2x)—1—-k)(o+c(l—0))
1-(1—-k)c—x
T 14k (1—k)c— 2kz, (10)
1—-(1-k)ec
T 14+k-(01-k)

The first inequality is because (9) is no more than 1, and the last inequality is because (10) is no more than i

Case2.z, > o(1 —¢),y; <o+ ¢(l — o). The output is @ = o(1 — ¢),b = 0 + ¢(1 — 0). Note that the cost at y,. is either at
most the cost at y; or at most that at z; (since 1 — y,- > ;). Thus the maximum cost is achieved by at least one of the agents at
Zy, T, y;. First, we consider the cost at z;, and we can assume x; < o(1 — ¢); otherwise we have cost(a, b, x;) < cost(a,b, x;)
and it reduces to consider the cost at z,.. We have

cost(a,b,x;)  o(l—c)—x;+k(o+c(l—-0)—0o(l—-c))+1—-0—c(l—-0)
2-OPT 1+ (1 —k)z, + k(1 —27) - (1—k)y
1—-(1-k)ec—ax
1+(1—k)$r—|—k‘(1 —23?[) — (1—k)yl
1—(1-k)e—uqy
1+ 1-kA—-co+k(l—2x)—(1—k)(o+c(l—0))
1-(1-k)c—xm
1+ k(1 —2x;)—(1—k)c
1-(1-k)c
1+k—(1—k)c

IN

Second, for the cost at x,., we have
cost(a,b,x,) xp —o(l—c)+kc+1—(o+c(l—o0))
2-OPT 1+ (1 —k)a, +k(1—2x)—(1—Fk)y
zp—20(l—c)+1—(1—-k)c
1+ (1 -k, + k(1 —2x) — (1 —k)y
zr—20(1—¢c)+1—(1—-k)c
14+ (1 —k)z + k(1 —22) — (1 —k)(o+ c(1 —0))
0—20(1—¢c)+1—(1—k)
1+ (1—=k)o+k(1l—2x;)— (1—k)(o+c(1—-0))
0—20(1—¢c)+1—(1-k)
1+ (1=k)o+ k(1 —2min(o,1 —0)) — (1 —k)(o+ ¢(1 —0))
1-(1-k)c 1+ 2ck
<max(1+k—(1—k)c’2—(1—k)c’c>'
The second last inequality is because z; < o and x; < 1 — y,. < 1 — o. For the last inequality, we regard o as a variable, and it
is easy to find that when 0 < o < 0.5, we have
cost(a, b, x,) < 0—20(1—¢)+1—(1-k)
2.-0PT ~ 1+ —=k)o+k(l—20)—(1—k)o+c(l—-0))’
and when 0.5 < 0 < 1, we have
cost(a, b, z,) < 0—20(l—¢c)+1—-(1—-k)c
2-OPT ~—1+(10—-klo+k(1-2(1-0))— (1 —k)(o+c(l—0))

IN

IN

IN




Since both expressions on the right hand side are monotone with respect to o (possibly increasing or decreasing), the upper
bound must be attained by the maximum of the three cases when o = 0, 0.5, 1, establishing the inequality.

Last, for the cost at yy; we have

cost(a,b,y;) ol —c)+kcto+c(l—o)—uy
2-OPT 1+ (1—k)z, +k(1—2z)— (1-k)y
< o(l—c)+ke+o+c(l—0)—y
T 1+ (1 —-Fk)o(l—c)+ k(1 —-2x) - (1-k)y
ol—c)+kc+o+c(l—0)—o
1+ (1 -k)o(l—c)+k(1—-2x)—(1-k)o
< ol—c¢)+kc+o+e(l—0)—o0
14+ (1-k)o(l—-c)+k(l—-2min(o,1—0))—(1—k)o

o (o L2k 11—k
S YT A e T k- (1 —k)e )

For the last inequality, we regard o as a variable, and it is easy to find that when 0 < o < 0.5, we have

cost(a,b,y;) < ol—c¢)+kec+o+ce(l—0)—o0
2-OPT ~— 1+ (1—k)o(1—c)+k(1—20)—(1—k)o’

and when 0.5 < 0 < 1, we have

cost(a,b,y;) < o(l—c¢)+kc+o+c(l—0)—o0
2-OPT ~14+(1-k)o(l—c)+k(1-2(1-0)—(1—k)o

Since both expressions on the right hand side are monotone with respect to o, the upper bound must be attained by the maximum
of the three cases when o = 0, 0.5, 1, establishing the inequality.

Case3. z, <o(l—c),y1 <o+ c(l—o0). The outputis a = x,,b = 0+ ¢(1 — 0), and the maximum cost is achieved by z;
or y;. First, we consider the cost at x;, and we have

cost(a,b,x;)  wp —x;+k(o+c(l—0)—2.)+1—-0—c(l—-0)
2-OPT 1+ (1 —-ka,+k(1—22)— (1 —-k)y
1+ (A -E)z, —x— (1 —E)(o+c(l —0))
B 1+(1—k)a:r—|—k(1—2xl) — (l—k)yl
1+(1-kQ—-co—a;— (1 —k)(o+c(1—0))
1+(1-kA—-co+k(l—2x)—(1—-k)y
1+(1-k)(1—-clo—x;— (1 —k)(o+¢c(l—0))
T14+(10-k(A-co+k(l—-21)—(1—-k)(o+c(l—0))
1-(1-k)c—x
1—(1—]6)0—&-]@’(1—2171)

1—-(1—-k)c—0
“1-(1-kec+k(1-0)
1—(1-k)ec

1+ k—(1—k)



Second, for the cost at g;, we have

cost(a,b,y1) xr+k(o+c(l—0)—z,)+o+c(l—0)—uy
2-OPT 1+ —k)x,+k(1—-2x)—(1—-k)y
_ A=Kz, —y+ 0 +k)(o+cl-0)
1+ = k), k(= 21) — (1 —k)y
(1-Eo(l—c)—y+ (1+k)(o+c(l-0))
T 14+ (1=ko(l—c)+k(1-2x)—(1-kuy
< (I1-Fk)o(l—-c)—o+ (1+Ek)(o+c(l—-0))
T 1+ (1-ko(l—c)+k(1—22)—(1—k)o
(I-kKo(l—c)—o+(14+k)(o+c(1—0))
~1—(1=k)oc+ k(1 —2min(1 —o,0(1 — ¢)))
kE(2c—c?)+1—-c2 1—-(1-k)e
2 —2c+2ck ’1—&—k‘—(1—k:)c>'

< max (c,

The second last inequality is because x; < z, < o(1 — ¢) and x; < 1 — y,. < 1 — o. For the last inequality, we regard o as a
variable, and it is easy to find that when 0 < o < %_C, we have

cost(a, b, y;) < 0 —20c+ c+ ke
2-OPT ~— 1-(01—-k)oc+ k(1 —20(1-¢c))’

and when 71— < 0 < 1, we have

cost(a, b, y;) < 0—2o0c+ c+ ke
2.0PT —1-(1—kjoc+k(l—2(1—0))

Since both expressions on the right hand side are monotone with respect to o, the upper bound must be attained by the maximum
of the three cases when o = 0, ﬁ, 1, establishing the inequality.

Case 4.z, > o(1 —¢),y; > 0+ ¢(1 — o). The output is a = o(1 — ¢), b = y;, and the maximum cost is achieved by x; or
. First, we consider cost(a, b, 2;), and we can assume z; < o(1 — ¢), as otherwise cost(z;) < cost(z,). We have

cost(a,b,x;) o(l —c)—x+k(yy—o(l—c))+1—y
2 OPT 1+ (1— k)ay + k(L —22;) — (1 - k)y,
1+(1-kQ—-co—a;— (1 —k)y
1+ (1 =ka,+ k(1 —2x)— (1 —k)y
1+(1—]€)(1—C)0—1‘l—(1—]€)yl
T 1+ (1 -k)o(l—c)+ k(1 —-2x)—-(1—-ku
1+ (1 -k)(1—-co—x;— (1 —k)(o+¢c(1—0))
1+ (1=K -co+k(1—-2x)— 1 —-k)(o+c(l—0))
1—3’,‘[—(1—16)0
1+ k(1 —2x;)—(1—k)c
1—(1-k)ec
T 14+k-(01-k)




Second, for the cost at z,., we have

cost(a, b, x,) _ T — ol—c)+k(yi—o(l=0)+1—y
2. OPT 1+ (1= k)ar + k(1 —227) — (1 — B)y
14z, = (1+k)(1—c)o—(1—ky
1+ (I =Kz, + k(1 —22) — (1 - k)y
l+o-—(1+k)(A—-co—(1—-k)u
T 14+ (I —k)o+k(1—2x)—(1-k)y
I14o0—(14+k)(Q—-co—(1=k)(o+c(1—0))
T 14+ (1 —-ko+Ek(1—-2x)—(1—-k)(o+c(l—0))
< 1—042co—(1—-k)c
~ 1+ k(1 —2min(o,(1 —¢)(1 —0))) — (1 = k)c(1 — o)
1—(1-k)e k(2ce—c?)+1—c?
S]“%‘X<1+k(1k;)c’ 92— 2¢ + 2ck )

The second last inequality is because 2; < 2, < oandz; < 1—y, <1 —1y; <1 —0— ¢(1 — 0). For the last inequality, we

regard o as a variable, and it is easy to find that when 0 < o0 < %:27 we have

cost(a, b, x,) < 1—0+2co—(1-k)c
2.0PT ~ 1+k(1—20)—(1—k)e(1—o)

and when

;:i < 0 <1, we have
cost(a, b, ) 1—0+2c0o—(1-k)c
2-OPT ~14k(1-2(1-¢)(1—0))—(1—k)c(l—0)

Since both expressions on the right hand side are monotone with respect to o, the upper bound must be attained by the maximum

of the three cases when o = 0, %:Z, 1, establishing the inequality.

According to the four cases above, the ratio is

M b 1-(1-k% k(2c—c?) +1—c*  1+2ck
MSQ'HI&X ( )C , (C C)+ C’ +2c ,C (11)
OPT 1+k—(1-k)e 2 —2c+2ck 2—-(1-k)
We need to select a proper value of ¢ so that the right hand side of (11) is minimized. Fixing k, note that % is
decreasing with ¢, and 2—1?_172—61]& is increasing with c. Consider the equation

1—(1-k)c 1+ 2ck

1+k—(1—k)e 2—-(1-k)c

The only solution is

oo LR = VET -3k 1k

1— k2
_ 1+k*—VET—K3+3k2+k 1—(1—k)e _ k(2c—c®)+1—c? 1—(1—k)c ..
Furthermore, when ¢ = - , we have THh—(—F)c —  2—2c79ck and TTh—(—F)e > c. Hence, it minimizes

the right hand side of (11).

F Another randomized mechanism for maximum cost

We present another randomized mechanism that is at most 1.441-approximation for maximum cost.
2(1—k)

Mechanism 5. Given location profile x, let a be =, and % with probabilities ;_"—Z and =;—=, respectively. Let b be y; and
# with probabilities 12X and 2(31::), respectively. Return (a, b).

Lemma 4. Mechanism 5 is group strategyproof.

Proof. We consider a group of agents S C N1 U Na. Let f(x) = (a, b) be the outcome when all agents report true locations,
and f(x,x_g) = (¢/, ") be the outcome when the agents in S misreport x’s, where a, b, a’, b’ are random variables that follow
the distributions given in the mechanism. Assume w.l.o.g. that |E[a] — E[a/]| > |E[b] — E[b’]|. We show that at least one agent
in the group cannot gain by misreporting.



When E[a’] < Ela], then it must be x|, < z,, and the agent located at z, is in the group. Under the solution (a, b), the cost

of the agent at x,. is
cost(a,b, z,) = x, — E[a] + k(E[b] — E[a]) + (1 — E[?]).

Under the solution (a’, '), the cost of the agent at x,. is
cost(a', V', x,) = x, — E[d'] + k(E[V'] — E[a']) + (1 — E[b']).
Since |E[a] — E[d']| > |E[b] — E[t']], it follows that
cost(a’, b, x,.) — cost(a,b,z,) = (1 + k)(E[a] — E[d']) + (1 — k)(E[b] — E[b']) > 0,

indicating that this agent cannot gain.

When E[a’] > E[a], there exists at least one agent ¢ € S N Ny. If E[p'] < E[b], it is clear that any agent located at [0, %]
cannot gain because the change of the endpoints in both regions do not benefit this agent. For an agent 7 € N; located at
(%, x,], under the solution (a, b), the cost of the agent at x,. is

1+k 2 -2k r r
cost(a, b, ;) = 3%?(% — @i+ h(EIb] - 7)) + T (@ — o+ K[ - ) + 1 - EY
1+k 2 — 2k T, kx,
- 2 — ka, I 1-(1-kE
5 @ — @i = k) + (@ - )+ 1= (1—=kE[]
Under the solution (a’, '), the cost of this agent is
14k 2 — 2k x! kx!

cost(a’, b, ;) (x! — x; — kal) + ——— "y +1—(1—k)ED].

33—k
Since E[b'] < E[b], it follows that

1+k 2—-2k 1+k
cost(a’, V', x;) — cost(a, b, z;) > L(1 —k)(z) —x) — T % %

, then the agent located at y; must be in the group and misreport a location

(I;“ - 1‘7“) = Oa

w
o~

indicating that this agent cannot gain. If E[b'] > E[b
on the right of y;. It is easy to see that

cost(a’, b, y;) — cost(a,b,y) = (1 + k)(E[D] —E[B]) + (1 — k)(E[a'] — Ela]) > 0,

and thus this agent cannot decrease the cost. O

Now we prove the approximation ratio.

. . . . . . . . . 492k
Theorem 9. Mechanism 5 is a randomized group strategyproof mechanism. The approximation ratio for maximum cost is 5=3*

when k € |0, k], and is % when k € [k, 1), where k = % ~ 0.114.

Proof. Given any instance with location profile x, we assume w.l.o.g. that 1 — y,. > z;. By Theorem 3, the optimal solution is
(a,b) = (2fze W2 4 1) and the optimal maximum cost is

cost(a,byx;)) =a—x;+k(b—a)+1—b= %[1 + (1 —-k)a,+ k(1 —2x)— (1 —Ek)y).

Now we consider the solution returned by Mechanism 5. We discuss the 4 realizations of the probability distribution.

* (z,,y;) with probability E;fﬁgz

cost is attained by x;, that is,

. By the analysis in the proof of Theorem 4 and the assumption 1 — y,. > x;, the maximum

MC(LL‘T,yl,X) = COSt(xmyl»ml) =T — 2]+ k(yl - xr) +1—y.

wutl 2(1—k)(1+k)

* (2., ¥5—) with probability S o The maximum cost is attained by z; or y;. The cost of z; is z, — x; + lc(leJrl

Tr)+1— %, and the cost of y; is % + k;(’”TJr1 — x,) + ... It is easy to see that the cost of y; is no less than the cost
of z;. Hence, the maximum cost is attained by y;, that is,

wrl x) = cost(x ptl y):l_yl
9 T 2 » Yl 2

o (%, ;) with probability W The maximum cost is attained by x,., that is,

y+1

MC(z,, 3

+ k( — ) + .

Ly Ty s Ty
MC(?,:%X) = COSt(?vyh%) =5t k(yr — ?) +1—u.



o (%, 1‘5-1” ) with probability 4(%1::))22 . The maximum cost is attained by x, or y;, where both costs are equal to
Ty 1+yl _xr 1+yl Ly ]-_yl
MC’(27 5 ,x)—2+k( 5 2) 5
Therefore, the expected maximum cost of the solution returned by the mechanism is
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Then, the ratio between the expected maximum cost and the optimal maximum cost is

(+k)(2=k)+2(1—k) (zr—y) _ (1+k)’m,
3=k (3=k)2
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Considering z,. — ¥; as a variable of the function in (12), the derivative with respect to this variable is always non-negative for
any k € [0, 1), which implies that the maximum possible value is achieved when x;,- = y;. Then the ratio becomes

12)

1+k)(2—k 14+k)%x
I8 _ G 2 (k)2 —R)B—k) - (1+ k)

= . 13
14k —2kxy (37]{)2 14+ k — 2kxy (13)

(1+k)(2—k)(3—k) _ (14Fk)?
1+k - T2 -

Letk = 9’ﬁ ~ 0.114 be the root of the equation

* When k € [0, k], we have (Hk)(ﬁ:)(?’_k) < (1;’;)2, the maximum value of the ratio in (13) is achieved when z; = 0, that

is 2 (+k)C-K)EB—Fk 4-2k (14)
(3—k)2 1+k 3k

e When k € [k, 1], we have (Hk)(ﬁ_];)@*k) > (1;:)2 , and the ratio in (13) is increasing with x;. Since 1 — y,, > x;, 27 18

upper bounded by % Letting z; = %, the maximum value of the ratio in (13) is

200+ k)(2—-k)(B—Fk)— (14 k) 11+ 2k — 9k?
(3—k)2 9+ k2—6k

15)

O

The maximum possible value of the approximation ratio over all & € [0,1) is 9 — 63/2 ~ 1.441, which is attained by
k = 3 — 2+/2. Hence, generally we can say that Mechanism 5 is 1.441-approximation for any k € [0, 1), and in particular, it
is %-approximation when k& = 0, and nearly optimal when & approaches 1. Compared with the approximation ratio 1-%1@ of the
deterministic TWOINNEREXTREME, this randomized one improves when k£ < 0.396, but is worse for any larger k.



