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Abstract

Man-made and natural disruptions such as planned construc-
tions on roads, suspensions of bridges, and blocked roads by
trees/mudslides/floods can often create obstacles that sepa-
rate two connected regions. As a result, the traveling and
reachability of agents from their respective regions to other
regions can be affected. To minimize the impact of the obsta-
cles and maintain agent accessibility, we initiate the problem
of constructing a new pathway (e.g., a detour or new bridge)
connecting the regions disconnected by obstacles from the
mechanism design perspective. In the problem, each agent in
their region has a private location and is required to access
the other region. The cost of an agent is the distance from
their location to the other region via the pathway. Our goal is
to design strategyproof mechanisms that elicit truthful loca-
tions from the agents and approximately optimize the social
or maximum cost of agents by determining locations in the
regions for building a pathway. We provide a characterization
of all strategyproof and anonymous mechanisms. For the so-
cial and maximum costs, we provide upper and lower bounds
on the approximation ratios of strategyproof mechanisms.

1 Introduction
In modern societies, various types of infrastructures are
constructed to connect regions to facilitate the traveling or
reachability of agents from their corresponding regions to
other regions (Amekudzi, Thomas-Mobley, and Ross 2007;
Forkenbrock and Foster 1990; Narayanaswami 2017). These
types of infrastructures include highways, streets, roads,
bridges, and transportation systems. For instance, using the
road infrastructure, an agent from a region can drive to reach
another region effectively.

Unfortunately, these infrastructures can sometimes be in-
terrupted either temporarily or permanently due to man-
made or natural disruptions (Boakye et al. 2022; Faturechi
and Miller-Hooks 2015; Gu et al. 2020; Serdar, Koç, and
Al-Ghamdi 2022). For example, man-made disruptions can
refer to the planned large construction project of a road, the
construction of a transportation hub (e.g., a subway station),
the suspension of bridges (e.g., due to accidents), or the in-
terruption of an area due to public activities (e.g., parades,
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temporary markets, or sporting events). In addition, natural
disruptions can be in the form of the aftermath of disasters
(e.g., earthquakes and storms), where roads and bridges are
damaged or blocked by large trees, mudslides, or floods.

These disruptions can often result in obstacles that discon-
nect any two regions and affect the traveling and reachability
of agents. Therefore, our goal is to determine the best way to
construct new routes/pathways connecting the disconnected
regions in order to minimize the impact of the obstacles and
maintain the accessibility of the agents. In temporary disrup-
tions with obstacles (e.g., road constructions, public events,
or large trees on roads), the new pathways can be viewed as
detours connecting the regions so that agents can continue to
access other regions before the removal of the obstacles. In
permanent disruptions with obstacles (e.g., the suspensions
of bridges or roads), the new pathways can be regarded as
part of newly added roads or bridges connecting the regions.
With the new pathways, the agents from their corresponding
regions can still travel and reach the other regions, overcom-
ing the obstacles due to disruptions.

Figure 1: An obstacle o disconnects the agents (denoted as
solid points) in two regions, and a new pathway (a, b) con-
nects them.

In Figure 1, we provide an example of the suspension of a
structurally deficient bridge (modeled simply as a line with
an obstacle on it). The bridge originally connected Region L
and Region R. With the bridge suspension, the bridge now
becomes an obstacle (denoted by o on the line), and the two
regions are now disconnected. Each agent located in their
respective region needs to access (e.g., for work, school, or
other daily routine) the other region divided by the obstacle.
As agents cannot cross the obstacle directly, our goal is to
maintain the accessibility of the agents to the regions (e.g.,
from Region L to Region R) by building a pathway or new
bridge (denoted as a green line with endpoints a and b in
Figure 1) connecting Region L and Region R.

Existing optimization literature has considered building



optimal pathways between two disconnected regions, aim-
ing to minimize the maximum distance between any two
points from the two regions (see, e.g., (Cai, Xu, and Zhu
1999; Kim, Shin, and Chwa 1998; Kim and Shin 2001; Tan
2000, 2002)). While these studies designed polynomial algo-
rithms for building optimal bridges between different types
of convex polygons (more details in related work), there are
two main assumptions that make the current optimization
literature not ideal for capturing real-world situations un-
der disruptions involving agents. First, existing literature as-
sumes that the agents are located in all of the points in the re-
gions. However, in many real-world situations, agents’ loca-
tions consist only of a subset of discrete points in the regions.
Second, existing literature assumes that each agent’s loca-
tion is public information. However, agent locations might
not be known in advance and require elicitation (Nisan et al.
2007; Procaccia and Tennenholtz 2013). Therefore, our goal
is to build optimal pathways to account for agents’ locations
to connect them to the respective regions.

Our Contribution
We initiate the mechanism design study of building (ap-
proximately) optimal pathways between two regions discon-
nected by obstacles under disruptions to connect agents from
their respective regions to other regions. We focus on a basic
setting where a line segment (denoted by an interval [0, 1])
connecting two regions is separated by an obstacle o (see
Figure 1).1 Agents in the regions are denoted by sets N1

and N2, depending on whether their locations are points on
the left-hand side or the right-hand side of the obstacle (i.e.,
xi ∈ [0, o) or xi ∈ (o, 1] for any agent i in N1 or N2).

We aim to design mechanisms to elicit agent locations and
build a pathway/edge (a, b) that connects the two discon-
nected regions, where the left endpoint a is in [0, o) and the
right endpoint b is in (o, 1]. Given an edge (a, b), the cost of
an agent at xi ∈ [0, o) is |xi−a|+k(b−a)+1−b with k be-
ing a non-negative multiplication factor, that is, the distance
from their location to the (farthest) endpoint on the other re-
gion, passing through edge (a, b). The cost of an agent at
xi ∈ (o, 1] is defined similarly as |xi − b| + k(b − a) + a.
We consider adding edges that minimize two different ob-
jectives: the social cost (i.e., the total cost of all agents) and
the maximum cost (i.e., the maximum cost among all agent
costs). When k ≥ 1, a mechanism that returns an optimal so-
lution (o− ϵ, o+ ϵ) is group strategyproof for ϵ → 0. There-
fore, we only need to focus on the situation when k ∈ [0, 1).2

We first provide a characterization of all strategyproof
and anonymous mechanisms as two-dimensional general-
ized median mechanisms by showing that the agent pref-
erences over the locations on where to build the pathway

1The line space has been extensively studied in mechanism de-
sign of facility location problems for modeling geographic regions
and other real-world non-geographic situations (Chan et al. 2021;
Procaccia and Tennenholtz 2013).

2In various situations, the social planner can determine the
value of k appropriately. For instance, k >> 1 can be set for con-
structing a temporary detour. When creating a new road or bridge
(to replace an older one), the social planner can set k < 1 by mak-
ing it wider or having higher speed limits.

are two-dimensional single-peaked. The single-peakedness
means that agents have preferences over a set of options (i.e.,
pathway locations in our setting) that can be ordered, so that
each agent has the most preferred option (called the peak)
and their preference for other options decreases as they move
away from this peak. See more details in Section 3.

For the social cost, we derive an optimal solution on
where to build a pathway and show that the mechanism that
returns the optimal solution is group strategyproof. For the
maximum cost, we show that there is a unique optimal so-
lution on where to build a pathway and the optimal solu-
tion is not strategyproof. We show that a deterministic group
strategyproof mechanism, TWOEXTREME, that simply con-
nects two agent locations nearest to the obstacle has an ap-
proximation ratio of 2

1+k . We provide an improved mecha-
nism, TWOEXTREMERESTRICT, by not allowing the end-
points of the edge to be too close to the obstacle (see The-
orem 5). On the other hand, we show that no determinis-
tic strategyproof mechanism has an approximation ratio less
than 2

1+
√
k

. Moreover, we design a randomized group strat-
egyproof mechanism RANDMAXCOST that has an approxi-
mation ratio of max

(
4−2k
3−k , 1+k

1+k2

)
. We also provide a lower

bound 6+6k
5+7k for any randomized strategyproof mechanisms.

See Figure 2 for an illustration of the above bounds.
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Figure 2: An illustration of upper and lower bounds for the
maximum cost when k ∈ [0, 1). The upper bounds of our
mechanisms are depicted in solid lines, and the lower bounds
are in dashed lines.

All of our results apply to the setting where the obstacle is
a closed subinterval of [0, 1] because such a subinterval can
shrink to a point as in our setting.

Organization. We present the model in Section 2. We pro-
vide a characterization of all strategyproof mechanisms in
Section 3. We study the social cost in Section 4 and the max-
imum cost in Section 5. All omitted proofs are in Appendix.

Related Works
While no existing mechanism design literature considers our
setting, we discuss the most related optimization studies on
building optimal bridges connecting two regions and adding
edges to discrete networks to improve network parameters.
We also discuss the related works in the approximate mech-
anism design without money paradigm.



Bridge-building. Existing optimization literature has con-
sidered the problem of building an optimal bridge to connect
two disconnected regions. Cai et al. (1999) introduced the
problem of adding a line segment to connect two disjoint
convex polygonal regions in a plane, such that the length
of the longest path from a point in one polygon, passing
through the bridge, to a point in another region is minimized.
They proposed an O(n2 log n)-time algorithm, where n is
the maximum number of extreme points of the polygons.
Later, (Bhattacharya and Benkoczi 2001) proposed a linear-
time algorithm that improves the O(n2 log n)-time algo-
rithm in (Cai, Xu, and Zhu 1999). Tan (2000) independently
presented an alternative linear-time algorithm for the above
setting and further generalized it to an O(n2)-time algorithm
for bridging two convex polyhedra in space. (Kim and Shin
2001) provided algorithms to find an optimal bridge between
two convex polygons, two simple non-convex polygons, and
one convex and one simple non-convex polygons in O(n),
O(n2), and O(n log n), respectively. Later, Tan (2002) pro-
vided an O(n log3 n)-time algorithm for the settings of two
simple non-convex polygons. Kim et al. (1998) proposed a
linear-time algorithm to compute an optimal bridge between
two parallel lines separated by an obstacle to minimize the
length of the longest path connecting two points on the lines.
However, all of the above-mentioned works focus on all
points in the regions. Our work focuses on a finite subset of
points, which are the agents’ locations, and the mechanism
perspective in which agents’ locations are private.

Edge addition on networks. Existing optimization stud-
ies have examined adding edges to discrete networks (with
nodes and edges) to minimize the diameter or average short-
est distances between pairs of nodes of a network (see, e.g.,
(Demaine and Zadimoghaddam 2010; Meyerson and Tagiku
2009; Papagelis, Bonchi, and Gionis 2011; Perumal, Basu,
and Guan 2013). However, all these optimization studies on
discrete networks do not consider disconnected regions that
are continuous and assume agents occupy all nodes/vertices
of the network. Moreover, they do not consider the mecha-
nism design perspective.

Mechanism design. Our considered mechanism design
setting is within the paradigm of approximate mechanism
design without money, initialized by Procaccia and Tennen-
holtz (Procaccia and Tennenholtz 2013) who used facility
location problems (FLPs) as case studies. This paradigm in-
vestigates the design of approximately optimal strategyproof
mechanisms through the lens of the approximation ratio. In
a typical setting of FLPs, the agents report their private loca-
tions on the real line to a mechanism. The mechanism deter-
mines the locations for building facilities to minimize some
objectives involving the costs of agents, where the cost of
each agent is their distance to the facilities. Following their
work, variations of FLPs have been introduced and stud-
ied (see, e.g., (Dokow et al. 2012; Feldman and Wilf 2013;
Filos-Ratsikas and Voudouris 2021; Lin 2020; Mei et al.
2019; Meir 2019)). We note that the case k = 0 of our set-
ting is equivalent to a 2-FLP problem where each agent i
has two locations, xi and the endpoint of the other region
(0 or 1), whose cost is the total distance from their two lo-

cations to the two facilities (which are now represented as a
pathway with k = 0). We refer readers to a survey on mech-
anism design for FLPs (Chan et al. 2021). The most relevant
mechanism design work to ours is the work of (Chan and
Wang 2023) in which they considered modifying the struc-
ture of regions by adding a shuttle or road to improve the
distances of the agents to a prelocated facility. In contrast,
they do not consider two regions separated by an obstacle.

2 Model
Let N = {1, . . . , n} be the set of agents located in an in-
terval [0, 1]. The location profile of agents is denoted as
x = (x1, . . . , xn). There is an obstacle located at point
o ∈ (0, 1). Provided that no agent is at o, this obstacle par-
titions the agents into N = (N1, N2) according to their re-
gions, where N1 = {i ∈ N | xi < o} is the set of agents
on the left region, and N2 = {i ∈ N | xi > o} is the
set of agents on the right region. The agents on one region
are required to access the other region. Due to the obstacle,
the agents cannot pass through it and reach the other region
directly. Hence, we want to build a new edge (a, b) that con-
nects the two regions with a ∈ [0, o) and b ∈ (o, 1]. The
length of the edge is k(b−a), where k is a positive constant.

A deterministic mechanism f : Rn → R2 is a function
that takes the agent location profile x as input and returns an
edge f(x). Given an edge f(x) = (a, b), the cost of each
agent i ∈ N1 on the left region is the distance to the right
endpoint 1 through the edge,

cost(a, b, xi) = |xi − a|+ k(b− a) + (1− b).

Similarly, the cost of each agent i ∈ N2 on the right region
is the distance to the left endpoint 0 through the edge,

cost(a, b, xi) = |xi − b|+ k(b− a) + a.

A randomized mechanism is a function f from Rn to prob-
ability distributions over R2. If f(x) = P is a probability
distribution, the cost of agent i ∈ N is defined as the ex-
pected cost cost(P, xi) = E(a,b)∼P [cost(a, b, xi)].

A mechanism f is strategyproof if no agent can de-
crease their cost by misreporting the location within their
region. Formally, f is strategyproof if for any i ∈ N,x and
x′
i with xi, x

′
i on the same region, cost(f(xi,x−i), xi) ≤

cost(f(x′
i,x−i), xi), where x−i is the location profile of

the agents in N \ {i}. Further, f is called group strate-
gyproof if no group of agents can misreport simultaneously
so that all agents in the group are better off. That is, for
any S ⊆ N,x,x′

S , there exists an agent i ∈ S such that
cost(f(x), xi) ≤ cost(f(x′

S ,x−S), xi). A mechanism f is
anonymous if the outcomes are invariant under permutation
of agents, i.e., f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) for ev-
ery profile x and every permutation of agents π : N → N .
Since a non-anonymous mechanism is based on the identity
of the agents and is much less interesting, we focus only on
anonymous mechanisms.

Our goal is to design (group) strategyproof mechanisms
with good performance guarantees under two objectives:
minimizing the social cost and minimizing the maximum
cost. The social cost with respect to an edge (a, b) and



location profile x is SC(a, b,x) =
∑

i∈N cost(a, b, xi).
The maximum cost with respect to an edge (a, b) and lo-
cation profile x is MC(a, b,x) = maxi∈N cost(a, b, xi).
A mechanism f is α-approximation (α ≥ 1) for the ob-
jective function ∆ ∈ {SC,MC} if ∆(f(x),x) ≤ α ·
min(a,b)∈R2 ∆(a, b,x) for all location profiles x ∈ Rn.

We remark that when the constant coefficient is k ≥ 1,
there is a trivial solution (o− ϵ, o+ ϵ) for some fixed value
ϵ > 0. As k ≥ 1, every agent wants the edge to be as
short as possible, that is, ϵ approaches 0. Then, a mechanism
that returns the fixed solution (o− ϵ, o+ ϵ) is clearly group
strategyproof and (almost) optimal for both objectives when
ϵ → 0. Therefore, in the remainder of this paper, we assume
that k ∈ [0, 1). Because it is natural for each agent to only
misreport locations within their own region, our model as-
sumes that agents cannot misreport their locations in other
regions. However, it is worth noting that all of our mecha-
nisms (Mechanism 1-4) are still strategyproof and retain the
same approximation even without this assumption.

3 Characterizing Strategyproof Mechanisms
In this section, we show that the preference profile of agents
is multi-dimensional single-peaked, and the generalized me-
dian mechanisms compose the class of all anonymous strat-
egyproof mechanisms.

We start with some necessary definitions. Let D be a
set of possible outcomes. A one-dimensional axis A on D
is any strict ordering <A of the outcomes in D. A multi-
dimensional axis Am = ⟨A1, . . . , Am⟩ on D is a collection
of m distinct axes, each being a one-dimensional axis on D.

Definition 1 ((Barberà, Gul, and Stacchetti 1993)). Let Am

be an m-dimensional axis on the set D of possible out-
comes. An agent i’s preference ⪰i is m-dimensional single-
peaked with respect to Am if: (1) there is a single most-
preferred outcome (peak) pi ∈ D, and (2) for any two out-
comes α, β ∈ D, α ⪰i β whenever β <At α <At pi or
pi <At α <At β for all axes At, t = 1, . . . ,m.

Then, a preference profile is called m-dimensional single-
peaked if there exists an m-dimensional axis Am such that
every agent preference is m-dimensional single-peaked with
respect to Am. While the preference profile in our prob-
lem is not one-dimensional single-peaked, it is indeed two-
dimensional single-peaked.

Theorem 1. For any instance of our problem, the preference
profile of agents is 2-dimensional single-peaked.

Proof. In our problem, an outcome is a shortcut edge (a, b)
with a ∈ [0, o) and b ∈ (o, 1], and it uniquely corresponds
to a point (a, b) in the 2-dimensional xy-coordinate system.
Thus, the set of all possible outcomes can be represented by
a set D = {(x, y) ∈ R2 | 0 ≤ x < o < y ≤ 1} in a plane,
as shown in Figure 3.

Now we show that every agent is 2-dimensional single-
peaked with respect to the collection of x-axis and y-axis.
For any agent i ∈ N1, the single most-preferred outcome
(peak) is pi = (xi, 1) ∈ D. For any two outcomes (points)

Figure 3: An illustration of the set D when the obstacle is
at o = 0.6. For location profile x = (0.1, 0.2, 0.4, 0.8, 1),
the agent peaks are (0.1, 1), (0.2, 1), (0.4, 1), (0, 0.8), (0, 1),
denoted as red points.

(x, y), (x′, y′) ∈ D, if they satisfy (1) x′ < x < xi or
xi < x < x′, and (2) y′ < y < 1, then we have

c(x, y, xi) = |xi − x|+ k(y − x) + 1− y

< |xi − x′|+ k(y′ − x′) + 1− y′ = c(x′, y′, xi),

implying that agent i has a smaller cost under (x, y) than that
under (x′, y′) and the agent prefers (x, y). On the other hand,
for any agent j ∈ N2, the single most-preferred outcome is
pj = (0, xj) ∈ D. For any two outcomes (x, y), (x′, y′) ∈
D, if they satisfy (1) y′ < y < xj or xj < y < y′, and
(2) 0 < x < x′, similarly, it is easy to see that agent j has
a smaller cost under (x, y) than that under (x′, y′), and thus
the agent prefers (x, y). Hence, both conditions in Definition
1 are satisfied for every agent, and the preference profile is
2-dimensional single-peaked.

For (one-dimensional) single-peaked preferences in a
one-dimensional space, a mechanism is a generalized
median mechanism if there exists n + 1 constants
b1, . . . , bn+1 ∈ R ∪ {−∞,+∞} such that the outcome
is med(p1, . . . , pn, b1, . . . , bn+1), where med is the median
function, and p1, . . . , pn is the most-preferred outcome of
the n agents. For m-dimensional single-peaked preferences
in an m-dimensional space, an m-dimensional generalized
median mechanism can be decomposed into m independent
one-dimensional generalized median mechanisms, with the
t-th mechanism determining the coordinate of the outcome
on the t-th dimension, for all t = 1, . . . ,m (see, e.g., (Sui
2015)). Barberà et al. (1993) provide a characterization re-
sult: a mechanism for multi-dimensional single-peaked pref-
erences in a multi-dimensional space is strategyproof and
anonymous if and only if it is a multi-dimensional general-
ized median mechanism. This characterization applies to our
problem by Theorem 1.
Corollary 1. A mechanism for our problem is strategyproof
and anonymous if and only if it is a 2-dimensional general-
ized median mechanism.

4 Social Cost
In this section, we consider the social cost. We start with
some necessary notations. For each point x ∈ [0, o), define
N1l(x) = {i ∈ N1|xi ≤ x} to be the set of agents in N1 on
the left of x, and N1r(x) = {i ∈ N1|xi > x} to be the set
of agents in N1 on the right of x. For each point x ∈ (o, 1],
define N2l(x) = {i ∈ N2|xi < x} to be the set of agents in



N2 on the left of x, and N2r(x) = {i ∈ N2|xi ≥ x} to be
the set of agents in N2 on the right of x.

We consider a mechanism that determines the location of
the two endpoints separately. First, the mechanism fixes b
and moves a from 0 towards the obstacle as long as the social
cost is decreasing. Second, it moves b from 1 towards the
obstacle as long as the social cost is decreasing.
Mechanism 1 (OPTSOCCOST). Given location profile x,
let XL be the set of all points x ∈ [0, o) that satisfy

|N1l(x) ∪N2| · (1− k) < |N1r(x)| · (1 + k),

and let a∗ = supXL if XL is non-empty and a∗ = 0 other-
wise. Let XR be the set of all points x ∈ (0, 1] that satisfy

|N2r(x) ∪N1| · (1− k) < |N2l(x)| · (1 + k),

and let b∗ = infXR if XR is non-empty and b∗ = 0 other-
wise. Return (a∗, b∗).

Note that for every x ∈ [0, o) and fixed b, if we move the
left endpoint a from x to x + ϵ for some sufficiently small
value ϵ > 0, the cost of the agents in N1l(x) ∪N2 increases
by (1 − k)ϵ, and the cost of the agents in N1r(x) decreases
by (1+k)ϵ. Thus, if we move a from 0 towards the obstacle
as long as the social cost is decreasing, it approaches the
supremum of XL. Symmetrically, we move b towards the
obstacle and it approaches the infimum of XR. Since the
supremum of XL and the infimum of XR can only be the
agent locations, the mechanism is in polynomial time.

When k = 0, OPTSOCCOST is exactly the median mech-
anism that selects the x-coordinate (resp. y-coordinate) of
the outcome to be the median of the x-coordinates (resp. y-
coordinates) of n agent peaks.
Theorem 2. Mechanism 1 is group strategyproof and opti-
mal for the social cost.

Proof. For the group strategyproofness, we consider a group
of agents S ⊆ N1 ∪ N2. Let f(x) = (a, b) be the outcome
when all agents report true locations, and f(x′

S ,x−S) =
(a′, b′) be the outcome when the agents in S misreport x′

S .
Assume w.l.o.g. that |a−a′| ≥ |b−b′|. We show that at least
one agent in the group cannot gain by misreporting.

If a′ < a, the agents in N1r(a) cannot gain and they are
not in the group. Since the agents in N2 cannot change the
location of a, by the definition of the mechanism, an agent
located at a must be in the group and misreport a location
to the left of a. The cost of this agent decreases by at most
(1 − k)|b′ − b| − (1 + k)(a − a′) ≤ 0, indicating that this
agent can never gain.

If a′ > a, by the mechanism, there exists at least one
agent in N1l(a) and in group S who misreport the location to
the right of a. However, the cost of such an agent in N1l(a)∩
S will decrease by at most (1−k)|b′−b|−(1−k)(a′−a) ≤ 0,
and the agent cannot gain by misreporting.

For the optimality, let (a∗, b∗) be the solution returned by
the mechanism, and let (a, b) be an optimal solution. As-
sume w.l.o.g. that |a−a∗| ≥ |b−b∗|. If a < a∗, we consider
a new solution (a+ ϵ, b), where ϵ > 0 is a sufficiently small
number so that there is no agent in the interval (a, a + ϵ).
Compared with solution (a, b), each agent in N1l(a) ∪ N2

increases the cost by (1 − k)ϵ, and each agent in N1r(a)
decreases the cost by (1 + k)ϵ. By the definition of a∗ and
the fact that a < a∗, we have |N1l(a) ∪ N2| · (1 − k) <
|N1r(a)| · (1 + k), indicating that the social cost of (a, b) is
larger than that of (a+ϵ, b), which contradicts the optimality.

If a > a∗, we change the solution (a, b) to (a∗, b). Each
agent in N1l(a

∗)∪N2 decreases the cost by (1−k)(a−a∗),
and the increase of cost for every agent in N1r(a

∗) is at most
(1 + k)(a − a∗). By the definition of a∗ = supXL and the
fact that XL is an open set, we have |N1l(a

∗)∪N2|·(1−k) ≥
|N1r(a

∗)| · (1+ k). It indicates that the social cost of (a∗, b)
is no more than that of (a, b), and (a∗, b) is also optimal.

Then we change the solution (a∗, b) to (a∗, b∗). By a sym-
metric analysis, we know that b > b∗ is impossible, and if
b ≤ b∗, the social cost of (a∗, b∗) is no more than that of
(a∗, b). Hence, (a∗, b∗) is optimal.

5 Maximum Cost
In this section, we consider the maximum cost. We first char-
acterize the unique optimal solution and show that the mech-
anism that returns the optimal solution is not strategyproof.
We then study deterministic and randomized mechanisms.

The Optimal Maximum Cost
Given location profile x, let xl = min{xi|i ∈ N1} and xr =
max{xi|i ∈ N1} be the two extreme agent locations to the
left, and let yl = min{xj |j ∈ N2} and yr = max{xj |j ∈
N2} be the two extreme agent locations to the right.

Lemma 1. In any optimal solution (a, b) for maximum cost,
we have a ≤ xl+xr

2 and b ≥ yl+yr

2 .

Proof. Suppose that a > xl+xr

2 , which indicates that
cost(a, b, xr) < cost(a, b, xl). Clearly, the maximum cost
is attained by xl or yl or yr. We consider a solution (a−ϵ, b)
that moves the left endpoint to a sufficiently small positive
value ϵ < a− xl+xr

2 . Then the cost of the agents at xl, yl, yr
decreases, and thus the maximum cost decreases, which con-
tradicts the optimality. Therefore, it must be a ≤ xl+xr

2 . By
a symmetric analysis, we can prove b ≥ yl+yr

2 .

Lemma 2. In any optimal solution (a, b) for maximum cost,
either a = xl+xr

2 , or b = yl+yr

2 .

Proof. Suppose that a ̸= xl+xr

2 and b ̸= yl+yr

2 . By Lemma
1, we have a < xl+xr

2 and b > yl+yr

2 . It is easy to see that
the maximum cost is attained by either xr or yl. We consider
a solution (a+ϵ, b−ϵ) that moves the two endpoints towards
the obstacle by a sufficiently small value ϵ > 0. The cost
of both agents at xr and yl decreases by (1 + k)ϵ − (1 −
k)ϵ = 2kϵ, and thus the maximum cost decreases, which
contradicts the optimality. Therefore, it must be a = xl+xr

2 ,
or b = yl+yr

2 , or both hold.

Now we describe the algorithm OPTMAXCOST to derive
the optimal maximum cost. Given location profile x, if 1 −
yr ≥ xl, define a∗ = xl+xr

2 and b∗ = yl−xl

2 + 1
2 . If 1−yr <

xl, define a∗ = xr−yr

2 + 1
2 and b∗ = yl+yr

2 . Return (a∗, b∗).



Notice that when 1 − yr = xl, the mechanism simply
returns the two midpoints (xl+xr

2 , yl+yr

2 ).

Theorem 3. OPTMAXCOST returns the unique optimal so-
lution for maximum cost. In addition, the optimal maximum
cost is attained by both the agents located at xr and yl.

Proof. We focus only on the case when 1− yr ≥ xl, as the
other case is symmetric. The mechanism returns (a∗, b∗) =
(xl+xr

2 , yl−xl

2 + 1
2 ). The maximum cost under (a∗, b∗) is at-

tained by the agents at xl, xr and yl, that is,

cost(a∗, b∗, xl) =
xr − xl

2
+ k(b∗ − a∗) +

1

2
− yl − xl

2

=
1

2
− yl + xl

2
+ k(b∗ − a∗) +

xl + xr

2
= cost(a∗, b∗, yl),

which is no less than cost(a∗, b∗, yr) since b∗ ≥ yl+yr

2 .
Suppose that (a, b) is an optimal solution. By Lemma 2,

we have either a = xl+xr

2 or b = yl+yr

2 . When a = xl+xr

2 ,
if b < b∗, then the agents at xl and xr have a larger cost in
(a, b) than that in (a∗, b∗), implying that (a, b) is not optimal
for maximum cost. If b > b∗, then the agent at yl has a
larger cost in (a, b) than that in (a∗, b∗), and thus (a, b) is not
optimal. Therefore, (a∗, b∗) is the unique optimal solution.

When b = yl+yr

2 , we have a ≤ xl+xr

2 by Lemma 1, and
the maximum cost induced by (a, b) is at least

cost(a, b, xr) = xr − a+ k(
yl + yr

2
− a) + 1− yl + yr

2

≥ xr − (1 + k)
xl + xr

2
+ 1− (1− k)

yl + yr
2

≥ cost(a∗, b∗, yl),

where the equation cost(a, b, xr) = cost(a∗, b∗, yl) holds
only if 1−yr = xl and a = xl+xr

2 , that is, (a, b) = (a∗, b∗).
Therefore, (a∗, b∗) is the unique optimal solution.

However, OPTMAXCOST is not strategyproof. Consider
a location profile x = (0, 0.2, 0.8, 1), and the obsta-
cle is at 0.5. The mechanism returns the two midpoints
(xl+xr

2 , yl+yr

2 ) = (0.1, 0.9), and the cost of the agent at
0.2 is 0.2 + 0.8k. If this agent misreports the location as
0.4, then the outcome of the mechanism becomes (0.2, 0.9),
and the cost of this agent with true location 0.2 decreases to
0.1 + 0.7k < 0.2 + 0.8k.

Deterministic Mechanisms
We consider designing deterministic strategyproof mecha-
nisms with good performance guarantees. We first present a
simple mechanism that connects the two extreme agent lo-
cations xr and yl (following the idea that the optimal max-
imum cost is attained by both xr and yl). We then improve
the mechanism by restricting the endpoints of the edge from
being too close to the obstacle.

Mechanism 2 (TWOEXTREME). Given location profile x,
return (xr, yl).

This mechanism falls in the class of generalized median
mechanisms. Because xr is the rightmost x-coordinate of
the n peaks and yl is the leftmost y-coordinate of the n
peaks, setting b1 = −∞ and b2 = · · · = bn+1 = +∞
gives xr = med(0, . . . , 0, (xi)i∈N1

, b1, . . . , bn+1), and set-
ting b1 = · · · = bn = −∞ and bn+1 = +∞ gives
yl = med(1, . . . , 1, (xj)j∈N2

, b1, . . . , bn+1). Thus it is strat-
egyproof by the characterization in Corollary 1.
Theorem 4. Mechanism 2 is group strategyproof and 2

1+k -
approximation for maximum cost.

Proof. For the group strategyproofness, we consider a group
of agents S ⊆ N1∪N2. Let f(x) = (xr, yl) be the outcome
when all agents report true locations, and f(x′

S ,x−S) =
(x′

r, y
′
l) be the outcome when the agents in S misreport x′

S .
Assume w.l.o.g. that |xr − x′

r| ≥ |yl − y′l|. If x′
r < xr, an

agent located at xr must be in the group and misreport a lo-
cation to the left of xr. The cost of this agent decreases by at
most (1−k)|y′l−yl|− (1+k)(xr−x′

r) ≤ 0, indicating that
this agent can never gain. If x′

r > xr, the cost of any agent in
N1 decreases by at most (1−k)|y′l−yl|−(1−k)(x′

r−xr) ≤
0, indicating that the agent in N1 can never gain and they are
not in the group S. However, by the definition of the mech-
anism, other agents in N2 are not able to induce an outcome
(x′

r, y
′
l) with x′

r ̸= xr, giving a contradiction.
For the approximation, we consider an arbitrary instance

with location profile x. Assume w.l.o.g. that 1 − yr ≥
xl. By Theorem 3, the optimal solution is (a∗, b∗) =
(xl+xr

2 , yl−xl

2 + 1
2 ), and the optimal maximum cost is

cost(a∗, b∗, xr) = cost(a∗, b∗, yl) = cost(a∗, b∗, xl)

=
xl + xr

2
− xl + k(b∗ − xl + xr

2
) + 1− b∗

=
1

2
− yl − xr

2
+ k(

1

2
+

yl − 2xl − xr

2
).

Now we consider the solution (xr, yl) returned by the
mechanism. Clearly, the maximum cost is attained by xl or
yr. Since 1− yr ≥ xl, the cost of the agent at xl is

cost(xr, yl, xl) = xr − xl + k(yl − xr) + 1− yl

≥ xr + k(yl − xr) + yr − yl = cost(xr, yl, yr),

implying that the maximum cost is attained by xl. Further,
cost(xr, yl, xl)

cost(a∗, b∗, xr)
=2· xr − xl + k(yl − xr) + 1− yl

1− yl + xr + k(1 + yl − 2xl − xr)

= 2 · 1 + (1− k)xr − xl − (1− k)yl
1 + (1− k)xr + k(1− 2xl)− (1− k)yl

.

Note that the assumption 1 − yr ≥ xl implies xl ≤ 1
2 , and

thus 1+(1−k)xr−xl

1+(1−k)xr+k(1−2xl)
≤ 1. Hence, cost(xr,yl,xl)

cost(a∗,b∗,xr)
is de-

creasing with yl, and by the fact yl ≥ xr, it gives
cost(xr, yl, xl)

cost(a∗, b∗, xr)
≤2· 1 + (1− k)xr − xl − (1− k)xr

1 + (1− k)xr + k(1− 2xl)−(1− k)xr

= 2 · 1− xl

1 + k − 2kxl
≤ 2

1 + k
,

where the last inequality follows from that 1−xl

1+k−2kxl

is decreasing with xl. Therefore, Mechanism 2 is 2
1+k -

approximation for maximum cost.



Remark 1. We remark that it may be of interest to consider
other two-extreme mechanisms that always return (xl, yr),
(xl, yl) or (xr, yr). Although these mechanisms are also
group strategyproof, their approximation ratio is 2 and it
cannot be improved for any k ∈ [0, 1).

The analysis for Mechanism 2 is tight for any k ∈ [0, 1].
Consider an instance with xl = 0, 1 − yr ≥ xl, and yl =
xr + ϵ for some sufficiently small positive number ϵ. The
optimal solution is (xl+xr

2 , yl−xl+1
2 ) = (xr

2 , yl+1
2 ) by The-

orem 3, and the optimal maximum cost is xr

2 +k · 1+yl−xr

2 +

1− 1+yl

2 = 1+k
2 − 1−k

2 ϵ. Mechanism 2 returns (xr, yl), and
the induced maximum cost is xr−xl+k(yl−xr)+1−yl =

1 − (1 − k)ϵ. The ratio is 1−(1−k)ϵ
(1+k)/2−(1−k)ϵ/2 → 2

1+k , when
ϵ approaches 0. Hence, the worst case happens when xr and
yl are very close to the obstacle o. To solve this case, we
need the endpoints of the edge to keep some distance from
the obstacle, which inspires the following mechanism.

Mechanism 3 (TWOEXTREMERESTRICT). Given location
profile x, return (a, b) with a = min(xr, o − oc) and b =
max(yl, o + c − oc), where o is the obstacle location and c

is a value in [0, 1] set to be 1+k2−
√
k4−k3+3k2+k
1−k2 .

Note that TWOEXTREME is a special case of Mechanism
3 when c = 0. Since the value of c above is optimally set,
Mechanism 3 has an improved approximation ratio than the
2

1+k -approximation of TWOEXTREME. Mechanism 3 is also
in the class of generalized median mechanisms. Indeed, we
can set |N1| phantoms at point (o− oc, 0), |N2| phantoms at
(1, o+c−co), and one phantom at (0, 1) in Euclidean plane,
and then a (resp. b) is the x-coordinate (resp. y-coordinate)
median of the 2n+1 points consisting of the n+1 phantoms
and the n peaks of agents.

Theorem 5. Mechanism 3 is group strategyproof and the
approximation ratio for maximum cost is at most two times
the maximum of the four numbers

1− (1− k)c

1+k−(1− k)c
,
k(2c− c2) + 1− c2

2− 2c+ 2ck
,

1 + 2ck

2−(1−k)c
and c.

Next, we complete the results by a lower bound.

Theorem 6. No deterministic strategyproof mechanism has
an approximation ratio less than 2

1+
√
k

for the maximum
cost, for any k ∈ [0, 1).

Proof. Consider the instance with location profile x =
(0, 1 − ϵ, 1), where the obstacle is located between 1 − ϵ
and 1, and ϵ > 0 is a sufficiently small positive number. For
convenience, we will ignore the terms with respect to ϵ in the
following calculations. Let f be a strategyproof mechanism,
and it returns f(x) = (a, 1) for some a ∈ [0, 1).

If a ≥
√
k

1+
√
k

, consider another instance with location pro-
file x′ = (0, a, 1). The optimal solution is (a2 , 1) by Theo-
rem 3, and the optimal maximum cost is a

2 + k(1 − a
2 ). By

the strategyproofness, f must return f(x′) = (a, 1), as oth-
erwise the agent located at a can decrease the cost by mis-
reporting a location 1 − ϵ (resulting in a location profile x
and an outcome (a, 1)). Then the maximum cost induced by

the mechanism f is cost(a, 1, 0) = a+ k(1− a). Thus, the
approximation ratio of f is at least

a+ k(1− a)
a
2 + k(1− a

2 )
= 2− k

k + (1−k)a
2

≥ 2

1 +
√
k
.

If a <
√
k

1+
√
k

, consider another instance with location pro-
file x′′ = (a, 1 − ϵ, 1). The optimal solution is ( 12 , 1) by
Theorem 3, and the optimal maximum cost is 1+k

2 . Again,
by the strategyproofness, f must return f(x′′) = (a, 1), as
otherwise the agent located at a can decrease the cost by
misreporting a location 0 (resulting in a location profile x
and an outcome (a, 1)). Then the maximum cost induced by
f is 1− a+ k(1− a). Thus, the ratio of f is at least

(k + 1)(1− a)

(k + 1)/2
= 2(1− a) ≥ 2(1−

√
k

1 +
√
k
) =

2

1 +
√
k
.

Although generally there is a gap between our upper
bound and the lower bound 2

1+
√
k

, they are matching when
k = 0 or k → 1. The largest gap is about 0.127, which
happens when k ≈ 0.311.

Randomized Mechanisms
Next, we consider randomized mechanisms. Inspired by the
worst-case instance of TWOEXTREME that returns (xr, yl),
we have the following randomized mechanism.
Mechanism 4 (RANDMAXCOST). Given location profile
x, return (a, b) as (xr, yl) with probability p and (xr

2 , yl+1
2 )

with probability 1− p, where p = max
(

1+k
3−k ,

k+k2

1+k2

)
.

Theorem 7. Mechanism 4 is a randomized group strate-
gyproof mechanism, and the approximation ratio for max-
imum cost is max

(
4−2k
3−k , 1+k

1+k2

)
.

Theorem 8. No randomized strategyproof mechanism has
an approximation ratio less than 6+6k

5+7k for the maximum
cost, for any k ∈ [0, 1).

The largest gap between the upper and lower bounds is
about 0.162, which happens when k ≈ 0.249.

6 Conclusion
We studied a novel mechanism design setting for connecting
two regions disconnected by obstacles under disruptions by
adding a pathway to minimize the social cost and the maxi-
mum cost of the agents. We first characterize all of the strate-
gyproof and anonymous mechanisms as 2-dimensional gen-
eralized median mechanisms. For the social cost and maxi-
mum cost, we derived optimal solutions on where to add the
pathway and designed strategyproof mechanisms.

For the open directions, an immediate direction is to ex-
amine whether one can improve the gaps between the upper
and lower bounds. Moreover, it would be interesting to con-
sider more general settings, including other types of regions
(e.g., convex regions), more than two regions, more than one
obstacle, or more than one pathway.
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A Remarks on single-peaked preferences
We remark that the preference profile of agents is not one-dimensional single-peaked, though we have shown it is two-
dimensional single-peaked.
Proposition 1. For any instance of our problem, the preference profile of agents is not one-dimensional single-peaked.

Proof. Let the obstacle be located at o = 0.5. Suppose for contradiction that there is a one-dimensional axis A on D so that
every agent is one-dimensional single-peaked with respect to A. Consider an agent i ∈ N1 located at xi = 0. This agent has a
peak at (0, 1) and a preference

(0, 1) ⪰i (0, 0.9) ⪰i (0.2, 1) ⪰i (0.2, 0.9) (1)
over several possible outcomes.

If both outcomes (0.2, 1), (0.2, 0.9) are on the same region of (0, 1) with respect to axis A, by the single-peakedness and
(1), the ordering can only be (0, 1) <A (0, 0.9) <A (0.2, 1) <A (0.2, 0.9), or (0.2, 0.9) <A (0.2, 1) <A (0, 0.9) <A (0, 1),
or (0, 0.9) <A (0, 1) <A (0.2, 1) <A (0.2, 0.9), or (0.2, 0.9) <A (0.2, 1) <A (0, 1) <A (0, 0.9). Then we consider an agent
i′ ∈ N2 located at xi′ = 0.9 whose peak is (0, 0.9). In all of the four cases, by the strict ordering <A and the single-peakedness
of i′, agent i′ should prefer (0.2, 1) to (0.2, 0.9). However, this is not true because

cost(0.2, 1, xi′) = 0.3 + 0.8k > 0.2 + 0.7k = cost(0.2, 0.9, xi′),

giving a contradiction.
If the outcomes (0.2, 1), (0.2, 0.9) are on different regions of (0, 1) with respect to axis A, by the single-peakedness of agent i

and (1), the ordering can only be (0.2, 1) <A (0, 1) <A (0, 0.9) <A (0.2, 0.9), or (0.2, 1) <A (0, 0.9) <A (0, 1) <A (0.2, 0.9),
or (0.2, 0.9) <A (0, 1) <A (0, 0.9) <A (0.2, 1), or (0.2, 0.9) <A (0, 0.9) <A (0, 1) <A (0.2, 1). Then we consider an agent
i′′ ∈ N1 located at xi′′ = 0.2 whose peak is (0.2, 1). In all of the four cases, by the strict ordering <A and the single-peakedness
of i′′, agent i′′ should prefer (0, 0.9) to (0.2, 0.9). However, this is not true because

cost(0, 0.9, xi′′) = 0.3 + 0.9k > 0.1 + 0.7k = cost(0.2, 0.9, xi′′),

giving a contradiction.
Therefore, it is impossible for every agent preference to be one-dimensional single-peaked with respect to axis A.

As an example of 2-dimensional generalized median mechanisms, the MEDIAN mechanism selects the x-coordinate (resp.
y-coordinate) of the outcome to be the median of the x-coordinates (resp. y-coordinates) of n agent peaks. Note that the peak
of an agent i ∈ N1 is (xi, 1), and the peak of an agent j ∈ N2 is (0, xj). That is, the MEDIAN mechanism returns(

med(0, . . . , 0, (xi)i∈N1
, b1, . . . , bn+1),

med((xj)j∈N2 , 1, . . . , 1, b1, . . . , bn+1)
)
,

where function med has 2n+ 1 entries, b1 = · · · = b⌈n
2 ⌉ = −∞, and b⌈n

2 ⌉+1 = · · · = bn+1 = +∞.
While this mechanism is of interests in facility location problems (Procaccia and Tennenholtz 2013; Sui 2015), it does not

perform as well as our mechanisms proposed for both social cost and maximum cost. We give some examples to illustrate it.
Consider the instance with location profile x = (0, ϵ, 1 − ϵ, 1), where the obstacle o satisfies 1 − ϵ < o < 1 and ϵ > 0 is a
sufficiently small positive number. For the maximum cost, the solution returned by the MEDIAN mechanism is (ϵ, 1), and the
optimal solution is ( 1−ϵ

2 , 1). The approximation ration is at least
MC(ϵ, 1,x)

MC( 1−ϵ
2 , 1,x)

=
k(1− ϵ) + 1− 2ϵ

k(1− 1−ϵ
2 ) + 1−ϵ

2

→ 2,

which is larger than the approximation ratio 2
1+k of our TWOINNEREXTREME mechanism for any k ∈ (0, 1).

For the social cost, we note that when k = 0 the MEDIAN mechanism is exactly our OPTSOCCOST mechanism, and thus
is optimal. When k > 1

2 , consider profile x. The solution returned by the MEDIAN mechanism is again (ϵ, 1), and the optimal
solution is (a → 1− ϵ, 1). The approximation ratio is at least

SC(ϵ, 1,x)

SC(1− ϵ, 1,x)
=

4k(1− ϵ) + ϵ+ ϵ+ 1− 2ϵ

4kϵ+ 2(1− ϵ) + (1− 2ϵ)
→ 4k + 1

3
,

which is worse than our mechanism OPTSOCCOST. When 0 < k ≤ 1
2 , consider another instance with one agent located at

0, t agents at ϵ, and t agents at 1 (t = 1, 2, 3, ...), where the total number of agents is n = 2t + 1 > 1
k when t is sufficiently

large, and ϵ > 0 is a sufficiently small positive number. The obstacle o satisfies 0 < o < ϵ. Thus, the location profile is

x′ = (0,

t︷ ︸︸ ︷
ϵ, . . . , ϵ,

t︷ ︸︸ ︷
1, . . . , 1). The MEDIAN mechanism outputs the solution (0, 1), while the optimal solution is (0, ϵ). The

approximation ratio is at least
SC(0, 1,x′)

SC(0, ϵ,x′)
=

k(2t+ 1) + t(1− ϵ)

kϵ(2t+ 1) + (t+ 1)(1− ϵ)
→ t+ k(2t+ 1)

t+ 1
= 1 +

k(2t+ 1)− 1

t+ 1
> 1,

which is worse than our mechanism OPTSOCCOST.



B Other Two-Extreme Mechanisms
The TWOINNEREXTREME mechanism that returns (xr, yl) is proven to be group strategyproof and 2

1+k -approximation for the
maximum cost in Theorem 4. We remark that other two-extreme mechanisms that return (xl, yr), (xl, yl) or (xr, yr) are also
group strategyproof, but the approximation ratio is 2.

The group strategyproofness follows from a similar analysis as in the proof of Theorem 4. For the approximation ratio,
we focus only on the instances with 1 − yr ≥ xl, as other instances are symmetric. The optimal solution is (a∗, b∗) =
(xl+xr

2 , yl−xl

2 + 1
2 ), and the optimal maximum cost is attained by xl, xr and yl simultaneously. For the mechanism that returns

(xl, yr), clearly the maximum cost is attained by xr or yl. The cost of the agent at xr is

cost(xl, yr, xr) = 2(a∗ − xl) + k(yr − xl) + 1− yr

≤ 2(a∗ − xl) + 2k(b∗ − a∗) + 2(1− b∗)

= 2 · cost(a∗, b∗, xr),

where the last inequality comes from the fact that b∗ = 1
2 + yl−xl

2 ≤ 1+yr

2 . The cost of the agent at yl is

cost(xl, yr, yl) = yr − yl + k(yr − xl) + xl

≤ 2(b∗ − yl) + 2k(b∗ − a∗) + xl

≤ 2(b∗ − yl) + 2k(b∗ − a∗) + 2a∗

= 2 · cost(a∗, b∗, yl).
For the mechanism that returns (xl, yl), the maximum cost is attained by xr, that is,

cost(xl, yl, xr) = 2(a∗ − xl) + k(yl − xl) + 1− yl

≤ 2(a∗ − xl) + 2k(b∗ − a∗) + 2(1− b∗)

= 2 · cost(a∗, b∗, xr),

For the mechanism that returns (xr, yr), we have cost(xr, yr, xl) ≤ cost(xr, yl, xl) ≤ 2
1+k cost(a

∗, b∗, xr) by Theorem 4, and

cost(xr, yr, yl) = yr − yl + k(yr − xr) + xr

≤ 2(b∗ − yl) + 2k(b∗ − a∗) + 2a∗

= 2 · cost(a∗, b∗, yl).
Therefore, the approximation ratio of all above mechanisms is 2.

The 2-approximation for the two-extreme mechanisms that return (xl, yr), (xl, yl) or (xr, yr) cannot be improved, for any
k ∈ [0, 1]. Consider any instance with xl = 0, xr = 1 − ϵ for some sufficiently small positive number ϵ, and yl = yr = 1,
and the obstacle is between 1 − ϵ and 1. The optimal solution is (xl+xr

2 , 1) by Theorem 3, and the optimal maximum cost is
1−ϵ
2 + k(1− 1−ϵ

2 ) = 1+k
2 − 1−k

2 ϵ. However, the maximum cost induced by (xl, yr) = (xl, yl) = (0, 1) is 1− ϵ+ k. We have
1−ϵ+k

(1+k)/2−(1−k)ϵ/2 → 2, when ϵ approaches 0. A symmetric instance shows that the 2-approximation analysis for mechanism
(xr, yr) is also tight.

C Proof of Theorem 8
Proof. Suppose that f is a randomized strategyproof mechanism with approximation ratio r < 6+6k

5+7k . Consider the instance
with location profile x = ( 13 ,

2
3 , 1), where the obstacle is located at 1− ϵ and ϵ > 0 is a sufficiently small positive number. For

convenience, we will ignore the terms with respect to ϵ in the following calculations. The optimal solution is ( 13 , 1), and the
optimal maximum cost is 1

3 + 2k
3 . Let P be the distribution of the left endpoint returned by mechanism f . For any realization

s ∼ P , the maximum cost is 1
3 + |s − 1

3 | + k(1 − s) (attained by either the agent at 1
3 or the agent at 2

3 ), and the expected
maximum cost is

MC =
1

3
+ E[|s− 1

3
|] + k − kE[s].

By the approximation ratio of r, we have
1
3 + E[|s− 1

3 |] + k − kE[s]
1
3 + 2k

3

≤ r, (2)

⇒ E[|s− 1

3
|] ≤ r(

1

3
+

2k

3
) + k(E[|s− 1

3
|] + 1

3
)− 1

3
− k, (3)

⇒ E[|s− 2

3
|] ≥ 1

3
− E[|s− 1

3
|] ≥ 1

3
−

r( 13 + 2k
3 ) + k

3 − 1
3 − k

1− k
. (4)



Next, we consider the instance with location profile x = (13 , 1 − 2ϵ, 1), where the obstacle is located at 1 − ϵ. Again we
ignore the terms with respect to ϵ for simplicity. The optimal solution is ( 12 , 1), and the optimal maximum cost is 1

2 +
k
2 . Let P ′

be the distribution of the left endpoint returned by mechanism f , and s′ ∼ P ′. By the strategyproofness, we have

Es′∼P ′ [|s′ − 2

3
|] + k(1− E[s′]) ≥ E[|s− 2

3
|] + k(1− E[s]), (5)

as otherwise the agent located at 2
3 in the first instance would like to misreport the location as 1− 2ϵ and decrease the cost.

If E[s′] ≤ E[s], then by (2) we have

(1− k)E[s′] + k
1
3 + 2k

3

≤ E[s] + k − kE[s]
1
3 + 2k

3

≤ r

⇒ E[s′] ≤
( 13 + 2k

3 )r − k

1− k
.

The maximum cost induced by the mechanism is at least

1

2
+ E[|s′ − 1

2
|] + k(1− E[s′]) ≥ 1 + k − (1 + k)E[s′]

≥ 1 + k − (1 + k)
( 13 + 2k

3 )r − k

1− k

Recall that the optimal maximum cost is 1+k
2 . Hence, the approximation ratio is at least

2−
2( 13 + 2k

3 )r − 2k

1− k
=

2− 2+4k
3 r

1− k
,

which can be easily verified to be larger than 6+6k
5+7k for any k ∈ [0, 1), given that r < 6+6k

5+7k . Therefore, it contradicts the
approximation ratio.

If E[s′] > E[s], then by (5) we have E[|s′ − 2
3 |] ≥ E[|s− 2

3 |]. The maximum cost induced by the mechanism is at least

1

2
+ E[|s′ − 1

2
|] + k(1− E[s′]) ≥ 1

2
+ E[|s′ − 1

2
|] + k(

1

2
− E[|s′ − 1

2
|])

=
1 + k

2
+ (1− k)E[|s′ − 1

2
|]

≥ 1 + k

2
+ (1− k)(E[|s′ − 2

3
|]− 1

6
)

≥ 1 + k

2
+ (1− k)(E[|s− 2

3
|]− 1

6
)

≥ 1 + k

2
+ (1− k)(

1

3
−

r( 13 + 2k
3 ) + k

3 − 1
3 − k

1− k
)− 1− k

6

=
2 + k

3
− r(

1

3
+

2k

3
)− k

3
+

1

3
+ k

= 1 + k − r(
1

3
+

2k

3
),

where the last inequality comes from (4). Then the approximation ratio is at least

1 + k − r( 13 + 2k
3 )

1
2 + k

2

,

which is strictly larger than r when r < 6+6k
5+7k . This gives a contradiction.

D Proof of Theorem 7
Lemma 3. Mechanism 4 is group strategyproof.

Proof. We show that the mechanism is group strategyproof whenever p ≥ 1+k
3−k . Consider a group of agents S ⊆ N1 ∪N2. Let

f(x) = (a, b) be the outcome when all agents report true locations, and f(x′
S ,x−S) = (a′, b′) be the outcome when the agents

in S misreport x′
S , where a, b, a′, b′ are random variables that follow the distributions given in the mechanism. Assume w.l.o.g.



that |E[a] − E[a′]| ≥ |E[b] − E[b′]|, which will cause |E[a] − E[a′]| ≠ 0. We show that at least one agent in the group cannot
gain by misreporting.

Case 1. When E[a′] < E[a], then it must be x′
r < xr, and the agent located at xr is in the group. Under the solution (a, b),

the cost of the agent at xr is
cost(a, b, xr) = xr − E[a] + k(E[b]− E[a]) + (1− E[b]).

Under the solution (a′, b′), the cost of the agent at xr is

cost(a′, b′, xr) = xr − E[a′] + k(E[b′]− E[a′]) + (1− E[b′]).

Since |E[a]− E[a′]| ≥ |E[b]− E[b′]|, it follows that

cost(a′, b′, xr)− cost(a, b, xr) = (1 + k)(E[a]− E[a′])− (1− k)(E[b′]− E[b]) ≥ 0,

indicating that this agent cannot gain.
Case 2. When E[a′] > E[a],E[b′] ≤ E[b], there exists at least one agent i ∈ S ∩ N1. It is clear that any agent located at

[0, xr

2 ] cannot gain because the change of the endpoints in both sides do not benefit this agent. For an agent i ∈ N1 located at
(xr

2 , xr], under the solution (a, b), the cost of the agent at xr is

cost(a, b, xi) = p · (xr − xi + k(E[b]− xr)) + (1− p) · (xi −
xr

2
+ k(E[b]− xr

2
)) + 1− E[b]

= p · (xr − xi − kxr) + (1− p) · (xi −
xr

2
− kxr

2
) + 1− (1− k)E[b]

Under the solution (a′, b′), the cost of this agent is

cost(a′, b′, xi) = p · (x′
r − xi − kx′

r) + (1− p) · (|xi −
x′
r

2
| − kx′

r

2
) + 1− (1− k)E[b′].

Since E[b′] ≤ E[b] and |xi − x′
r

2 | ≥ xi − x′
r

2 , it follows that

cost(a′, b′, xi)− cost(a, b, xi) ≥ p · (1− k)(x′
r − xr)− (1− p) · 1 + k

2
(x′

r − xr)

≥ 1 + k

3− k
(1− k)(x′

r − xr)−
2− 2k

3− k
· 1 + k

2
(x′

r − xr) = 0,

indicating that this agent cannot gain.
Case 3. When E[a′] > E[a],E[b′] > E[b], the agent located at yl must be in the group and misreport a location on the right

of yl. Still we calculate the cost of agent at yl. Under solution (a, b), it is

cost(a, b, yl) = E[b]− yl + k(E[b]− E[a]) + E[a]

And under solution (a′, b′), it is

cost(a′, b′, yl) = E[b′]− yl + k(E[b′]− E[a′]) + E[a′]

So we have
cost(a′, b′, yl)− cost(a, b, yl) = (1 + k)(E[b′]− E[b]) + (1− k)(E[a′]− E[a]) > 0,

and thus this agent cannot decrease the cost.

Then we prove the approximation ratio.

Proof. For the approximation, given any instance with location profile x, we assume w.l.o.g. that 1− yr ≥ xl. By Theorem 3,
the optimal solution is (a, b) = (xl+xr

2 , yl−xl

2 + 1
2 ), and the optimal maximum cost is

cost(a, b, xl) = a− xl + k(b− a) + 1− b =
1

2
[1 + (1− k)xr + k(1− 2xl)− (1− k)yl].

Now we consider the solution returned by Mechanism 4. We discuss the 2 realizations of the probability distribution.

• (xr, yl) with probability p. By the analysis in the proof of Theorem 4 and the assumption 1− yr ≥ xl, the maximum cost is
attained by xl, that is,

MC(xr, yl,x) = cost(xr, yl, xl) = xr − xl + k(yl − xr) + 1− yl.

• (xr

2 , 1+yl

2 ) with probability 1− p. The maximum cost is attained by xr or yl, where both costs are equal to

MC(
xr

2
,
1 + yl

2
,x) =

xr

2
+ k(

1 + yl
2

− xr

2
) +

1− yl
2

.



Then the expected maximum cost is

p · (xr − xl + k(yl − xr) + 1− yl) + (1− p) ·
(
xr

2
+ k(

1 + yl
2

− xr

2
) +

1− yl
2

)
=

(1 + p)(1− k)(xr − yl) + 1 + p+ (1− p)k − 2pxl

2
.

Therefore, the ratio between the expected maximum cost and the optimal maximum cost is

(1 + p)(1− k)(xr − yl) + 1 + p+ (1− p)k − 2pxl

1 + k + (1− k)(xr − yl)− 2kxl

≤ 1 + p+ (1− p)k − 2pxl

1 + k − 2kxl
(6)

≤ max

(
1 + p+ (1− p)k

1 + k
,
1 + p+ (1− p)k − p

1 + k − k

)
(7)

= 1 +max

(
p(1− k)

1 + k
, (1− p)k

)
, (8)

where (6) is because 1+p+(1−p)k−2pxl

1+k−2kxl
is no more than 1 + p, and (7) comes from the facts that 1− yr ≥ xl and xl ≤ 0.5.

Though setting p = k2+k
1+k2 minimizes the bound in (8), recall that the mechanism is group strategyproof only when p ≥ 1+k

3−k .

Hence,we set p = max
(

k2+k
1+k2 ,

1+k
3−k

)
. In this way, when k < 0.5, the ratio is at most 4−2k

3−k , and when k > 0.5, the ratio is at

most 1+k
1+k2 .

E Proof of Theorem 5

In this proof, we first treat c as a parameter in interval [0, 1] and do not specify its value. Then we select the best value of c to
minimize the approximation ratio.

Proof of the group strategyproofness. Let (a, b) be the output. Note that a and b are independent random variables, and
(1− c)o and o+ c(1− o) are two constants only related to k. Consider a group of agents S ⊆ N1 ∪N2, and let (a′, b′) be the
output when the agents in S misreport. Assume w.l.o.g. that |a′ − a| ≥ |b′ − b| and |a′ − a| > 0.

When a < xr, since |a′ − a| > 0, an agent located at xr must be in the group and misreport a location to the left of xr,
implying that a′ < a < xr. The cost of this agent decreases by at most (1− k)|b′ − b| − (1 + k)(a− a′) ≤ 0, indicating that
this agent can never gain.

When a = xr, it is either the case when an agent at xr misreports to its left so that a′ < a, or the case when some agent in
N1 misreports to the right of xr so that a′ > a. In both cases, the cost of this agent decreases by at most (1− k)|b′ − b| − (1−
k)|a′ − a| ≤ 0, indicating that this agent can never gain.

Proof of the approximation ratio. Given any instance with location profile x, we assume w.l.o.g. that 1 − yr ≥ xl. By
Theorem 3, the optimal solution is (a∗, b∗) = (xl+xr

2 , yl−xl

2 + 1
2 ), and the optimal maximum cost is

OPT = cost(a∗, b∗, xl) = a∗ − xl + k(b∗ − a∗) + 1− b∗ =
1

2
[1 + (1− k)xr + k(1− 2xl)− (1− k)yl].

We discuss four cases with respect to the output of the mechanism.

Case 1. xr ≤ o(1 − c), yl ≥ o + c(1 − o). The output is a = xr, b = yl, and the maximum cost must be achieved by xl,



because when 1− yr ≥ xl the cost at yr is no more than the cost at xl. We have
cost(a, b, xl)

2 ·OPT
=

xr − xl + k(yl − xr) + 1− yl
1 + (1− k)xr + k(1− 2xl)− (1− k)yl

=
1 + (1− k)xr − xl − (1− k)yl

1 + (1− k)xr + k(1− 2xl)− (1− k)yl
(9)

≤ 1 + (1− k)(1− c)o− xl − (1− k)yl
1 + (1− k)(1− c)o+ k(1− 2xl)− (1− k)yl

≤ 1 + (1− k)(1− c)o− xl − (1− k)(o+ c(1− o))

1 + (1− k)(1− c)o+ k(1− 2xl)− (1− k)(o+ c(1− o))

=
1− (1− k)c− xl

1 + k − (1− k)c− 2kxl
(10)

≤ 1− (1− k)c

1 + k − (1− k)c
.

The first inequality is because (9) is no more than 1, and the last inequality is because (10) is no more than 1
2k .

Case 2. xr ≥ o(1− c), yl ≤ o+ c(1− o). The output is a = o(1− c), b = o+ c(1− o). Note that the cost at yr is either at
most the cost at yl or at most that at xl (since 1− yr ≥ xl). Thus the maximum cost is achieved by at least one of the agents at
xl, xr, yl. First, we consider the cost at xl, and we can assume xl ≤ o(1− c); otherwise we have cost(a, b, xl) ≤ cost(a, b, xr)
and it reduces to consider the cost at xr. We have

cost(a, b, xl)

2 ·OPT
=

o(1− c)− xl + k(o+ c(1− o)− o(1− c)) + 1− o− c(1− o)

1 + (1− k)xr + k(1− 2xl)− (1− k)yl

=
1− (1− k)c− xl

1 + (1− k)xr + k(1− 2xl)− (1− k)yl

≤ 1− (1− k)c− xl

1 + (1− k)(1− c)o+ k(1− 2xl)− (1− k)(o+ c(1− o))

=
1− (1− k)c− xl

1 + k(1− 2xl)− (1− k)c

≤ 1− (1− k)c

1 + k − (1− k)c
.

Second, for the cost at xr, we have
cost(a, b, xr)

2 ·OPT
=

xr − o(1− c) + kc+ 1− (o+ c(1− o))

1 + (1− k)xr + k(1− 2xl)− (1− k)yl

=
xr − 2o(1− c) + 1− (1− k)c

1 + (1− k)xr + k(1− 2xl)− (1− k)yl

≤ xr − 2o(1− c) + 1− (1− k)c

1 + (1− k)xr + k(1− 2xl)− (1− k)(o+ c(1− o))

≤ o− 2o(1− c) + 1− (1− k)c

1 + (1− k)o+ k(1− 2xl)− (1− k)(o+ c(1− o))

≤ o− 2o(1− c) + 1− (1− k)c

1 + (1− k)o+ k(1− 2min(o, 1− o))− (1− k)(o+ c(1− o))

≤ max

(
1− (1− k)c

1 + k − (1− k)c
,

1 + 2ck

2− (1− k)c
, c

)
.

The second last inequality is because xl ≤ o and xl ≤ 1− yr ≤ 1− o. For the last inequality, we regard o as a variable, and it
is easy to find that when 0 ≤ o ≤ 0.5, we have

cost(a, b, xr)

2 ·OPT
≤ o− 2o(1− c) + 1− (1− k)c

1 + (1− k)o+ k(1− 2o)− (1− k)(o+ c(1− o))
,

and when 0.5 < o ≤ 1, we have
cost(a, b, xr)

2 ·OPT
≤ o− 2o(1− c) + 1− (1− k)c

1 + (1− k)o+ k(1− 2(1− o))− (1− k)(o+ c(1− o))
.



Since both expressions on the right hand side are monotone with respect to o (possibly increasing or decreasing), the upper
bound must be attained by the maximum of the three cases when o = 0, 0.5, 1, establishing the inequality.

Last, for the cost at yl we have

cost(a, b, yl)

2 ·OPT
=

o(1− c) + kc+ o+ c(1− o)− yl
1 + (1− k)xr + k(1− 2xl)− (1− k)yl

≤ o(1− c) + kc+ o+ c(1− o)− yl
1 + (1− k)o(1− c) + k(1− 2xl)− (1− k)yl

≤ o(1− c) + kc+ o+ c(1− o)− o

1 + (1− k)o(1− c) + k(1− 2xl)− (1− k)o

≤ o(1− c) + kc+ o+ c(1− o)− o

1 + (1− k)o(1− c) + k(1− 2min(o, 1− o))− (1− k)o

≤ max

(
c,

1 + 2ck

2− (1− k)c
,

1− (1− k)c

1 + k − (1− k)c

)
.

For the last inequality, we regard o as a variable, and it is easy to find that when 0 ≤ o ≤ 0.5, we have

cost(a, b, yl)

2 ·OPT
≤ o(1− c) + kc+ o+ c(1− o)− o

1 + (1− k)o(1− c) + k(1− 2o)− (1− k)o
,

and when 0.5 < o ≤ 1, we have

cost(a, b, yl)

2 ·OPT
≤ o(1− c) + kc+ o+ c(1− o)− o

1 + (1− k)o(1− c) + k(1− 2(1− o))− (1− k)o
.

Since both expressions on the right hand side are monotone with respect to o, the upper bound must be attained by the maximum
of the three cases when o = 0, 0.5, 1, establishing the inequality.

Case 3. xr ≤ o(1− c), yl ≤ o+ c(1− o). The output is a = xr, b = o+ c(1− o), and the maximum cost is achieved by xl

or yl. First, we consider the cost at xl, and we have

cost(a, b, xl)

2 ·OPT
=

xr − xl + k(o+ c(1− o)− xr) + 1− o− c(1− o)

1 + (1− k)xr + k(1− 2xl)− (1− k)yl

=
1 + (1− k)xr − xl − (1− k)(o+ c(1− o))

1 + (1− k)xr + k(1− 2xl)− (1− k)yl

≤ 1 + (1− k)(1− c)o− xl − (1− k)(o+ c(1− o))

1 + (1− k)(1− c)o+ k(1− 2xl)− (1− k)yl

≤ 1 + (1− k)(1− c)o− xl − (1− k)(o+ c(1− o))

1 + (1− k)(1− c)o+ k(1− 2xl)− (1− k)(o+ c(1− o))

=
1− (1− k)c− xl

1− (1− k)c+ k(1− 2xl)

≤ 1− (1− k)c− 0

1− (1− k)c+ k(1− 0)

=
1− (1− k)c

1 + k − (1− k)c
.



Second, for the cost at yl, we have

cost(a, b, yl)

2 ·OPT
=

xr + k(o+ c(1− o)− xr) + o+ c(1− o)− yl
1 + (1− k)xr + k(1− 2xl)− (1− k)yl

=
(1− k)xr − yl + (1 + k)(o+ c(1− o))

1 + (1− k)xr + k(1− 2xl)− (1− k)yl

≤ (1− k)o(1− c)− yl + (1 + k)(o+ c(1− o))

1 + (1− k)o(1− c) + k(1− 2xl)− (1− k)yl

≤ (1− k)o(1− c)− o+ (1 + k)(o+ c(1− o))

1 + (1− k)o(1− c) + k(1− 2xl)− (1− k)o

≤ (1− k)o(1− c)− o+ (1 + k)(o+ c(1− o))

1− (1− k)oc+ k(1− 2min(1− o, o(1− c)))

≤ max

(
c,
k(2c− c2) + 1− c2

2− 2c+ 2ck
,

1− (1− k)c

1 + k − (1− k)c

)
.

The second last inequality is because xl ≤ xr ≤ o(1 − c) and xl ≤ 1 − yr ≤ 1 − o. For the last inequality, we regard o as a
variable, and it is easy to find that when 0 ≤ o ≤ 1

2−c , we have

cost(a, b, yl)

2 ·OPT
≤ o− 2oc+ c+ kc

1− (1− k)oc+ k(1− 2o(1− c))
,

and when 1
2−c < o ≤ 1, we have

cost(a, b, yl)

2 ·OPT
≤ o− 2oc+ c+ kc

1− (1− k)oc+ k(1− 2(1− o))
.

Since both expressions on the right hand side are monotone with respect to o, the upper bound must be attained by the maximum
of the three cases when o = 0, 1

2−c , 1, establishing the inequality.

Case 4. xr ≥ o(1 − c), yl ≥ o + c(1 − o). The output is a = o(1 − c), b = yl, and the maximum cost is achieved by xl or
xr. First, we consider cost(a, b, xl), and we can assume xl ≤ o(1− c), as otherwise cost(xl) ≤ cost(xr). We have

cost(a, b, xl)

2 ·OPT
=

o(1− c)− xl + k(yl − o(1− c)) + 1− yl
1 + (1− k)xr + k(1− 2xl)− (1− k)yl

=
1 + (1− k)(1− c)o− xl − (1− k)yl

1 + (1− k)xr + k(1− 2xl)− (1− k)yl

≤ 1 + (1− k)(1− c)o− xl − (1− k)yl
1 + (1− k)o(1− c) + k(1− 2xl)− (1− k)yl

≤ 1 + (1− k)(1− c)o− xl − (1− k)(o+ c(1− o))

1 + (1− k)(1− c)o+ k(1− 2xl)− (1− k)(o+ c(1− o))

=
1− xl − (1− k)c

1 + k(1− 2xl)− (1− k)c

≤ 1− (1− k)c

1 + k − (1− k)c
.



Second, for the cost at xr, we have

cost(a, b, xr)

2 ·OPT
=

xr − o(1− c) + k(yl − o(1− c)) + 1− yl
1 + (1− k)xr + k(1− 2xl)− (1− k)yl

=
1 + xr − (1 + k)(1− c)o− (1− k)yl

1 + (1− k)xr + k(1− 2xl)− (1− k)yl

≤ 1 + o− (1 + k)(1− c)o− (1− k)yl
1 + (1− k)o+ k(1− 2xl)− (1− k)yl

≤ 1 + o− (1 + k)(1− c)o− (1− k)(o+ c(1− o))

1 + (1− k)o+ k(1− 2xl)− (1− k)(o+ c(1− o))

≤ 1− o+ 2co− (1− k)c

1 + k(1− 2min(o, (1− c)(1− o)))− (1− k)c(1− o)

≤ max

(
1− (1− k)c

1 + k − (1− k)c
,
k(2c− c2) + 1− c2

2− 2c+ 2ck
, c

)
.

The second last inequality is because xl ≤ xr ≤ o and xl ≤ 1 − yr ≤ 1 − yl ≤ 1 − o − c(1 − o). For the last inequality, we
regard o as a variable, and it is easy to find that when 0 ≤ o ≤ 1−c

2−c , we have

cost(a, b, xr)

2 ·OPT
≤ 1− o+ 2co− (1− k)c

1 + k(1− 2o)− (1− k)c(1− o)
,

and when 1−c
2−c < o ≤ 1, we have

cost(a, b, xr)

2 ·OPT
≤ 1− o+ 2co− (1− k)c

1 + k(1− 2(1− c)(1− o))− (1− k)c(1− o)
.

Since both expressions on the right hand side are monotone with respect to o, the upper bound must be attained by the maximum
of the three cases when o = 0, 1−c

2−c , 1, establishing the inequality.

According to the four cases above, the ratio is

MC(a, b,x)

OPT
≤ 2 ·max

(
1− (1− k)c

1 + k − (1− k)c
,
k(2c− c2) + 1− c2

2− 2c+ 2ck
,

1 + 2ck

2− (1− k)c
, c

)
. (11)

We need to select a proper value of c so that the right hand side of (11) is minimized. Fixing k, note that 1−(1−k)c
1+k−(1−k)c is

decreasing with c, and 1+2ck
2−(1−k)c is increasing with c. Consider the equation

1− (1− k)c

1 + k − (1− k)c
=

1 + 2ck

2− (1− k)c
.

The only solution is

c =
1 + k2 −

√
k4 − k3 + 3k2 + k

1− k2
.

Furthermore, when c = 1+k2−
√
k4−k3+3k2+k
1−k2 , we have 1−(1−k)c

1+k−(1−k)c = k(2c−c2)+1−c2

2−2c+2ck and 1−(1−k)c
1+k−(1−k)c ≥ c. Hence, it minimizes

the right hand side of (11).

F Another randomized mechanism for maximum cost
We present another randomized mechanism that is at most 1.441-approximation for maximum cost.

Mechanism 5. Given location profile x, let a be xr and xr

2 with probabilities 1+k
3−k and 2(1−k)

3−k , respectively. Let b be yl and
1+yl

2 with probabilities 1+k
3−k and 2(1−k)

3−k , respectively. Return (a, b).

Lemma 4. Mechanism 5 is group strategyproof.

Proof. We consider a group of agents S ⊆ N1 ∪ N2. Let f(x) = (a, b) be the outcome when all agents report true locations,
and f(x′

S ,x−S) = (a′, b′) be the outcome when the agents in S misreport x′
S , where a, b, a′, b′ are random variables that follow

the distributions given in the mechanism. Assume w.l.o.g. that |E[a]− E[a′]| ≥ |E[b]− E[b′]|. We show that at least one agent
in the group cannot gain by misreporting.



When E[a′] < E[a], then it must be x′
r < xr, and the agent located at xr is in the group. Under the solution (a, b), the cost

of the agent at xr is
cost(a, b, xr) = xr − E[a] + k(E[b]− E[a]) + (1− E[b]).

Under the solution (a′, b′), the cost of the agent at xr is

cost(a′, b′, xr) = xr − E[a′] + k(E[b′]− E[a′]) + (1− E[b′]).

Since |E[a]− E[a′]| ≥ |E[b]− E[b′]|, it follows that

cost(a′, b′, xr)− cost(a, b, xr) = (1 + k)(E[a]− E[a′]) + (1− k)(E[b]− E[b′]) ≥ 0,

indicating that this agent cannot gain.
When E[a′] > E[a], there exists at least one agent i ∈ S ∩ N1. If E[b′] ≤ E[b], it is clear that any agent located at [0, xr

2 ]
cannot gain because the change of the endpoints in both regions do not benefit this agent. For an agent i ∈ N1 located at
(xr

2 , xr], under the solution (a, b), the cost of the agent at xr is

cost(a, b, xi) =
1 + k

3− k
(xr − xi + k(E[b]− xr)) +

2− 2k

3− k
(xi −

xr

2
+ k(E[b]− xr

2
)) + 1− E[b]

=
1 + k

3− k
(xr − xi − kxr) +

2− 2k

3− k
(xi −

xr

2
− kxr

2
) + 1− (1− k)E[b]

Under the solution (a′, b′), the cost of this agent is

cost(a′, b′, xi) =
1 + k

3− k
(x′

r − xi − kx′
r) +

2− 2k

3− k
(|xi −

x′
r

2
| − kx′

r

2
) + 1− (1− k)E[b′].

Since E[b′] ≤ E[b], it follows that

cost(a′, b′, xi)− cost(a, b, xi) ≥
1 + k

3− k
(1− k)(x′

r − xr)−
2− 2k

3− k
· 1 + k

2
(x′

r − xr) = 0,

indicating that this agent cannot gain. If E[b′] > E[b], then the agent located at yl must be in the group and misreport a location
on the right of yl. It is easy to see that

cost(a′, b′, yl)− cost(a, b, yl) = (1 + k)(E[b′]− E[b]) + (1− k)(E[a′]− E[a]) ≥ 0,

and thus this agent cannot decrease the cost.

Now we prove the approximation ratio.
Theorem 9. Mechanism 5 is a randomized group strategyproof mechanism. The approximation ratio for maximum cost is 4−2k

3−k

when k ∈ [0, κ], and is 11+2k3−9k2

9+k2−6k when k ∈ [κ, 1), where κ = 9−
√
73

4 ≈ 0.114.

Proof. Given any instance with location profile x, we assume w.l.o.g. that 1− yr ≥ xl. By Theorem 3, the optimal solution is
(a, b) = (xl+xr

2 , yl−xl

2 + 1
2 ), and the optimal maximum cost is

cost(a, b, xl) = a− xl + k(b− a) + 1− b =
1

2
[1 + (1− k)xr + k(1− 2xl)− (1− k)yl].

Now we consider the solution returned by Mechanism 5. We discuss the 4 realizations of the probability distribution.

• (xr, yl) with probability (1+k)2

(3−k)2 . By the analysis in the proof of Theorem 4 and the assumption 1− yr ≥ xl, the maximum
cost is attained by xl, that is,

MC(xr, yl,x) = cost(xr, yl, xl) = xr − xl + k(yl − xr) + 1− yl.

• (xr,
yl+1
2 ) with probability 2(1−k)(1+k)

(3−k)2 . The maximum cost is attained by xl or yl. The cost of xl is xr − xl + k(yl+1
2 −

xr) + 1− yl+1
2 , and the cost of yl is 1−yl

2 + k(yl+1
2 − xr) + xr. It is easy to see that the cost of yl is no less than the cost

of xl. Hence, the maximum cost is attained by yl, that is,

MC(xr,
yl + 1

2
,x) = cost(xr,

yl + 1

2
, yl) =

1− yl
2

+ k(
yl + 1

2
− xr) + xr.

• (xr

2 , yl) with probability 2(1−k)(1+k)
(3−k)2 . The maximum cost is attained by xr, that is,

MC(
xr

2
, yl,x) = cost(

xr

2
, yl, xr) =

xr

2
+ k(yl −

xr

2
) + 1− yl.



• (xr

2 , 1+yl

2 ) with probability 4(1−k)2

(3−k)2 . The maximum cost is attained by xr or yl, where both costs are equal to

MC(
xr

2
,
1 + yl

2
,x) =

xr

2
+ k(

1 + yl
2

− xr

2
) +

1− yl
2

.

Therefore, the expected maximum cost of the solution returned by the mechanism is

(1 + k)2

(3− k)2
· (xr − xl + k(yl − xr) + 1− yl) +

2(1− k)(1 + k)

(3− k)2
·
(
1− yl

2
+ k(

yl + 1

2
− xr) + xr

)
+

2(1− k)(1 + k)

(3− k)2
·
(xr

2
+ k(yl −

xr

2
) + 1− yl

)
+

4(1− k)2

(3− k)2
·
(
xr

2
+ k(

1 + yl
2

− xr

2
) +

1− yl
2

)
=

(1 + k)2

(3− k)2
· (xr − xl + k(yl − xr) + 1− yl) +

2(1− k)(1 + k)

(3− k)2
·
(
3− 3yl

2
+ k(

3yl + 1

2
− 3xr

2
) +

3xr

2

)
+

4(1− k)2

(3− k)2
·
(
xr

2
+ k(

1 + yl
2

− xr

2
) +

1− yl
2

)
=

(1 + k)2

(3− k)2
· (xr − xl + k(yl − xr) + 1− yl) +

2(1− k)(1 + k)

(3− k)2
·
(
3(k − 1)(yl − xr)

2
+

3 + k

2

)
+

4(1− k)2

(3− k)2
·
(
xr

2
+ k(

1 + yl
2

− xr

2
) +

1− yl
2

)
=

(1 + k)(2− k)

3− k
+

2(1− k)(3− k)xr − 2(1− k)(3− k)yl − (1 + k)2xl

(3− k)2

=
(1 + k)(2− k) + 2(1− k)(xr − yl)

3− k
− (1 + k)2xl

(3− k)2
.

Then, the ratio between the expected maximum cost and the optimal maximum cost is

2 ·
(1+k)(2−k)+2(1−k)(xr−yl)

3−k − (1+k)2xl

(3−k)2

1 + (1− k)xr + k(1− 2xl)− (1− k)yl
. (12)

Considering xr − yl as a variable of the function in (12), the derivative with respect to this variable is always non-negative for
any k ∈ [0, 1), which implies that the maximum possible value is achieved when xr = yl. Then the ratio becomes

2 ·
(1+k)(2−k)

3−k − (1+k)2xl

(3−k)2

1 + k − 2kxl
=

2

(3− k)2
· (1 + k)(2− k)(3− k)− (1 + k)2xl

1 + k − 2kxl
. (13)

Let κ = 9−
√
73

4 ≈ 0.114 be the root of the equation (1+k)(2−k)(3−k)
1+k = (1+k)2

2k .

• When k ∈ [0, κ], we have (1+k)(2−k)(3−k)
1+k ≤ (1+k)2

2k , the maximum value of the ratio in (13) is achieved when xl = 0, that
is

2

(3− k)2
· (1 + k)(2− k)(3− k)

1 + k
=

4− 2k

3− k
. (14)

• When k ∈ [κ, 1], we have (1+k)(2−k)(3−k)
1+k ≥ (1+k)2

2k , and the ratio in (13) is increasing with xl. Since 1 − yr ≥ xl, xl is
upper bounded by 1

2 . Letting xl =
1
2 , the maximum value of the ratio in (13) is

2(1 + k)(2− k)(3− k)− (1 + k)2

(3− k)2
=

11 + 2k3 − 9k2

9 + k2 − 6k
. (15)

The maximum possible value of the approximation ratio over all k ∈ [0, 1) is 9 − 6 3
√
2 ≈ 1.441, which is attained by

k = 3 − 2 3
√
2. Hence, generally we can say that Mechanism 5 is 1.441-approximation for any k ∈ [0, 1), and in particular, it

is 4
3 -approximation when k = 0, and nearly optimal when k approaches 1. Compared with the approximation ratio 2

1+k of the
deterministic TWOINNEREXTREME, this randomized one improves when k ≤ 0.396, but is worse for any larger k.


